Study programme

1. Basic information about the course

The name of the field of study	Biotechnology				
The level of study	first degree study				
The profile of studing	general academic				

The name of the core discipline, in which more than half of the learning outcomes are obtained together with the percentage share of the number of ECTS credits for the core discipline in the total number of ECTS credits required to complete studies in the course of study.

The name of the core discipline	Share
chemical engineering	57 %

Names of other disciplines together with the percentage share of the number of ECTS credits for other disciplines in the total number of ECTS credits required to complete a course of study. PRS7

	Share
chemical sciences	26 %
biological sciences	17 %

Number of semesters	7
Specializations in the course of study	full time study: Applied biochemistry Purification and analysis of biotechnological products past time study: Applied biochemistry Purification and analysis of biotechnological products
Number of ECTS credit points required to complete the studies	210
Total number of class hours	full time study: Applied biochemistry: 2707 Purification and analysis of biotechnological products: 2707 past time study: Applied biochemistry: 1624 Purification and analysis of biotechnological products: 1624
Recruitment requirements	Requirements annually determined by the Senate of Rzeszów University of Technology
After graduation, the graduate obtains a professional title	Bachelor of Science (BSc)
	The graduate has basic knowledge and engineering skills. He possess a general knowledge in the field of biotechnology, in particular on issues related to: biotechnology (including understanding of biochemical, molecular and cellular basis of organism functioning, the potential use of biological material in biotechnology - from single molecules through complexes and macromolecules to single-cell and multicellular organisms), general and inorganic chemistry, physical chemistry and organic chemistry, chemical analysis (including basic methods of instrumental analysis, apparatus and unit processes (operations) used in the biotechnology in simple engineering tasks solving in the field of biotechnology, in particular related to: information technologies, computational and simulation techniques, mastery of essential experimental techniques used in biological sciences, application of fundamental experimental and laboratory techniques used in molecular biology, computer programs that support modeling and designing biotechnological processes.
Graduate's profile, employment opportunities	The graduate is prepared to take a professional job in those branches of the economy in which biotechnological processes are applied, i.e. in the agro-food industry, pharmaceutical industry, in environmental protection and in analytical, medical, research and control laboratories - in positions related to running and organization of production processes and quality control. The graduate is especially well prepared to work in units in which modern methods of isolation, purification and analysis of biotechnological products are applied, especially in the pharmaceutical industry. The graduate has a knowledge of a foreign language at the B2 level of the Common European Framework of Reference for languages of the Council of Europe. The graduate is aware of the necessity of continuous education and is prepared to undertake second-degree studies or appropriate post-graduate studies.

2. Learning outcomes

Symbol	Refer PRK	ferences to K
--------	--------------	------------------

02 Has knowledge of physics and biophysics that allows understanding and quantitative description of phenomena and processes 03 Has basic knowledge of information technologies and programmes useful in engineering activities characteristic of biotechnology	1
03 Has basic knowledge of information technologies and programmes useful in engineering activities characteristic of biotechnology	P6S_WG
	P6S_WG
Has structured general knowledge of basic departments of chemistry including inorganic, organic, physical and analytical chemistry, including knowledge of instrumental analysis techniques	P6S_WG
05 Knows the biochemical, molecular and cellular basis of the functioning of living organisms.	P6S_WG
06 Knows the principles of expression and inheritance of genetic information and molecular techniques used to study genetic materia	P6S_WG
07 Has knowledge about microorganisms and their use in biotechnological processes	P6S_WG
08 Has knowledge about the kinetics and properties of enzymes, their preparation and use to conduct biotechnological processes	P6S_WG
09 Has basic knowledge of molecular biology techniques and immunology used in biotechnology	P6S WG
10 Knows the techniques and methods of obtaining, purifying, identifying and characterizing biotechnology products	P6S WG
11 Knows the structure, functions and use of bioreactors and other apparatus used in industrial biotechnology	P6S WG
12 Has a general orientation in current directions of development of biotechnology and biotechnology industry	P6S WG
13 has basic knowledge about the life cycle of products, equipment and installations in the biotechnology industry.	P6S WG
14 Knows the basic methods, techniques, tools and materials used to solve basic engineering tasks related with biotechnology	P6S WG
Has the basic knowledge percessary to understand social, economic legal, ethical and other non-technical aspects of	100_110
15 biotechnology and genetic manipulation	P6S_WK
16 Has basic knowledge of management, including quality management and biotechnology products	P6S_WK
17 Knows the basic forms and procedures of protection of intellectual and industrial property	P6S_WK
18 Knows the general principles of creating and running forms of individual entrepreneurship	P6S_WK
19 Knows the mechanisms of bioprocess engineering processes and their methods of mathematical modeling and optimal guidance	P6S_WG
Can find information in professional literature and databases related to chemistry and biotechnology, link the found content, interpret and draw conclusions	P6S_UW
Can communicate using various techniques in a professional environment and in other environments	P6S_UK
Uses biochemical and biotechnological terminology correctly	P6S_UK
Demonstrates ability to prepare a well-documented study in the field of biotechnology in Polish and English	P6S_UW P6S_UK
Demonstrates ability to prepare oral presentations of specific issues in the field of chemistry and biotechnology in Polish and	P6S UW
English	P6S_UK
06 Has the ability to self-educate	P6S_UU
Has the ability to use a foreign language at B2 CEFR level in the field of biotechnology and the ability to use technical vocabulary in the field of the completed specialization	P6S_UK
Demonstrates ability to support computer programmes supporting work in the field of chemical and biotechnological technologies	P6S_UW
29 Can plan an experiment in the field of biochemistry, genetic engineering and biotechnology, correctly perform it, interpret results and draw conclusions	P6S_UW P6S_UO
Can use the knowledge in the field of mathematics and computer science to solve engineering tasks in the field of biotechnology using analytical and computational methods	P6S_UW
11 Demonstrates ability to perceive systemic and non-technical aspects of implemented engineering tasks	P6S_UW
¹² Obeys the principles of health and safety and demonstrates ability to assess the risks resulting from the use of biotechnological and chemical processes and their products and react in the event of their appearance	P6S_UW
13 Can apply basic legal regulations in the field of biotechnology	P6S UW
14 Can pre-evaluate the economic effects of engineering activities in the field of biotechnology	P6S UW
15 Can use the acquired knowledge to critically analyze and evaluate the functioning of existing technical solutions used in biotechnology	P6S_UW
16 Demonstrates ability to study physical and chemical properties, predict reactivity and synthesize simple compounds and materials used in biotechnology production	P6S_UW P6S_UO
17 Demonstrates ability to apply basic laboratory techniques for the separation and purification of chemical compounds and biotechnology products as well as their qualitative and quantitative analysis	P6S_UW
18 Demonstrates ability to apply basic laboratory techniques for the manipulation of genetic material	P6S_UW
19 Demonstrates ability to design a simple biotechnology process and system using appropriate methods, techniques and tools	P6S_UW
Understands the need for self-education and improvement of professional qualifications and update your directional knowledge	P6S_KK
12 Is aware of the importance of engineering activities, its effects and impact on the natural environment and the responsibility arising from the decisions made.	P6S_KO
Demonstrates ability to work both individually and as a team, can make decisions and execute commands of his/hor superiors	PAS KP
Demonstrates ability to properly define the priorities for the implementation of the task specified by himself/herself or other group	P6S_KK
Demonstrates ability to correctly identify and resolve dilemmas related to the profession	P6S_KK
Can think and act in an entrepreneurial way	
Understande the provide the public with information about hereficial and unformable accepte of activities where the the	-03_NU
production and use of biotechnology products and demonstrates ability to provide such information in a generally understandable	P6S_KO

The description of learning outcomes includes learning outcomes referred to in the Act of 22 December 2015 on the Integrated Qualification System and takes into account universal characteristics of the first degree cycle specified in this Act and the characteristics of the second degree cycle specified in the regulations issued on the basis of Article 7, section 3 of this Act, including the learning outcomes related to foreign language skills whereas in the case of the course of study leading to the award of the professional title of engineer - a full range of learning outcomes enabling the achievement of engineering competences.

3. Study plans, their parameters, verification methods and educational content

3.1. Applied biochemistry, full time

3.1.1. Parameters of the study plan

The total number of ECTS credits that a student must obtain in the course of classes conducted with direct participation of academic teachers or other persons conducting classes.	124 ECTS
The total number of ECTS credits allocated to classes related to scientific activity conducted at the university in a given discipline or disciplines to which the course of study is assigned.	124 ECTS
The total number of ECTS credits required to be obtained by a student in the humanities or social sciences for the courses of study assigned to disciplines within the fields of study other than the humanities or social sciences respectively.	5 ECTS
The total number of ECTS credits allocated to elective courses.	63 ECTS
Total number of ECTS credits allocated to work placements, internships (if the study program includes work placements or internships).	4 ECTS
Hours of apprenticeships, internships (if the study program provides for internships or apprenticeships).	160 h.
The total number of ECTS points that a student must obtain as part of a foreign language course.	9 ECTS
Number of hours of physical education classes.	60 h.

Detailed information about:

- 1. the relationship between learning outcomes and modular learning outcomes;
- 2. key learning outcomes in terms of knowledge, skills and social competences, demonstrating their relation to the discipline / disciplines to which the course is assigned;
- 3. the development of learning outcomes at the level of classes or group of classes, in particular related to the scientific activity conducted at the university;
- 4. learning outcomes in terms of knowledge, skills and social competences leading to the acquisition of engineering competences, in the case of study programmes on completion of which the student is awarded a professional title of engineer / Master of Engineering;

can be found in the Module Activity Sheets, available at the following URL: http://krk.prz.edu.pl/plany.pl?Ing=EN&W=C&K=H&TK=html&S=1491&C=2020, which are an integral part of the study programme.

Semester	Org.Unit	name of the subject	Lecture	Class	Laboratory	Project/ Seminar	Sum of hours	ECTS	Exam	Mand.
1	ZB	Technical safety and ergonomics	15	0	0	0	15	1	Ν	
1	СВ	Cell biology	15	0	0	0	15	2	Ν	
1	CN	General and inorganic chemistry	30	30	0	0	60	6	Т	
1	ZM	Academic savoir - vivre	10	0	0	0	10	1	Ν	
1	FF	Physics	30	30	0	0	60	6	Т	
1	CB	Genetics	30	15	0	0	45	4	Ν	
1	ZM	Social competences	10	15	0	0	25	2	Ν	
1	FM	Mathematics	30	30	0	0	60	6	т	
1	ZE	Economic course	30	0	0	0	30	2	Ν	
Sums for the	he semest	er: 1	200	120	0	0	320	30	3	4
2	СВ	Cell biology	15	0	30	0	45	4	Т	
2	CN	General and inorganic chemistry	30	15	45	0	90	7	Т	
2	FF	Physics	15	15	15	0	45	4	Т	
2	CI	Engineering graphics	15	0	30	0	45	4	Ν	
2	FM	Mathematics	30	30	0	0	60	6	Т	
2	CI	Packeges of application software	0	0	30	0	30	2	Ν	
2	CB	Computer science	15	0	30	0	45	3	Ν	
Sums for the	he semest	er: 2	120	60	180	0	360	30	4	4
3	CI	Chemical and biotechnological equipment	30	15	15	0	60	4	Ν	
3	CN	Biochemistry	15	0	30	0	45	3	Т	
3	CD	Biophysics	15	0	0	0	15	1	Ν	
3	CB	Bioinformatics	15	0	15	0	30	2	Ν	
3	CN	Analytical chemistry	15	0	30	0	45	3	Ν	
3	CF	Physical chemistry	30	15	0	0	45	4	Т	

3.1.2. Plan of study

3	CD	Organic chemistry	30	15	0	0	45	4	т	
3	DJ	Foreign language	0	30	0	0	30	2	N	
3	CB	General microbiology	30	0	30	0	60	5	т	
3	CB	Statistics and results elaboration	15	0	15	0	30	2	N	
3	DL	Physical education	0	30	0	0	30	0	N	
Sums for t	he semest	ter: 3	195	105	135	0	435	30	4	4
							1			
4	CN	Biochemistry	30	0	30	0	60	5	т	
4	CF	Physical chemistry	30	15	30	0	75	6	т	
			20	15	20	0	75	6	т	
4	CD	Crientific and technological information	30	15	30	0	75	0		Ē
4			0	0	2	0	2	0	IN N	
4	DJ		0	30	0	0	30	2	N	
4	CB	In vitro cultures	15	0	15	0	30	2	N	
4	CN	Industrial microbiology	30	0	30	0	60	5		
4		Biomaterials processing	30	30	30	0	30	4	N	
4 Sume for t	bo somosi		165	90	167	0	422	30	4	4
Sums for t	ne semes		105	30	107	Ū	722	50	-	-
	05			_				-		
5	CF	Instrumental analysis	30	0	45	0	75	5	N	
5	CB		15	0	15	0	30	2		
5	CB		30	0	30	0	60	5		
5	CN	Chemistry of cosmetics	15	0	15	0	30	2	N	
5	CI	Bioprocess engineering	30	15	0	0	45	3	N	
5	DJ	Foreign language	0	30	0	0	30	2	N	
5	CN	Analytical methods in biochemistry	15	0	15	0	30	3	Т	
5	CF	Biomolecular process modeling	15	0	15	15	45	4	N	
5	CB	Immunological techniques in biotechnology	30	0	30	0	60	4	N	
Sums for t	he semest	er: 5	180	45	165	15	405	30	2	3
				-				1		
6	CN	Forensic biochemistry	15	0	15	0	30	2	Ν	
6	CB	Molecular biology	15	0	15	0	30	2	Ν	
6	CS	Biodegradable biopolymers and polymers	15	0	15	0	30	2	Ν	
6	CI	Bioreactors	15	0	15	0	30	2	Ν	
6	CN	Chemistry and technology of biofuels	15	0	15	0	30	2	N	
6	CB	Enzymology	15	0	30	0	45	2	T	
6	CB		30	0	0	15	45	4	N	
6	CI	Bioprocess engineering	15	15	15	0	45	3	-	
6	CB		30	0	30	0	60	3		
6	DJ	Foreign language	0	30	0	0	30	3	Т	
6	CB	Computer-aided research	0	0	15	0	15	1	N	
6	СВ	loxicology	30	0	15	0	45	4	N	-
Sums for t	ne semest	er: 6	195	45	180	15	435	30	4	3
			1							
7	CN CF	Biocatalysis	15	0	15	0	30	2	N	
7	CF	Biosensors	15	0	15	0	30	2	N T	
7		Purification of biotechnology products	30	0	15	0	45	2	N	
7	CX	Professional training	0	0	0	0	0	4	N	
. 7	CX	Engineering project	0	0	0	120	120	. 11	N	
7	CI	Process design	0	0	0	30	30	2	Ν	
7	CM	Drug design and synthesis	15	0	15	15	45	4	Ν	
Sums for t	he semest	ter: 7	90	0	75	165	330	30	1	0
TOTALS F	OR ALL SI	EMESTERS:	1145	465	902	195	2707	210	22	22
	== •	-			=					-

Note that not being granted credits from the modules marked with a red flag makes it impossible to make an entry for the next semester (even if the total number of ECTS credits is lower than the permissible debt), these are modules continued in the next semester or modules in which failure to achieve all assumed learning outcomes does not allow one to continue studies in the modules included in the next semester's study programme

3.1.3. Elective modules

The following modules are an extension of the table from the chapter 3.1.2. They can be chosen by students regardless of their specialisation / education path.

Semester	Org.Unit	name of the subject	Lecture	Class	Laboratory	Project/ Seminar	Sum of hours	ECTS	Exam	Mand.
2	ZE	Fundamentals of economics	30	0	0	0	30	2	Ν	
2	ZO	Fundamentals of management	30	0	0	0	30	2	Ν	
3	DJ	English (A)	0	30	0	0	30	2	Ν	
3	DJ	English (B)	0	30	0	0	30	2	N	
3	DJ	French (A)	0	30	0	0	30	2	N	
3	DJ	French (B)	0	30	0	0	30	2	N	
3	DJ	German A	0	30	0	0	30	2	N	
3	DJ	German (A)	0	30	0	0	30	2	Ν	
3	DJ	Russian (A)	0	30	0	0	30	2	Ν	
3	DJ	Russian (B)	0	30	0	0	30	2	Ν	
4	DJ	English (A)	0	30	0	0	30	2	Ν	
4	DJ	English (B)	0	30	0	0	30	2	N	
4	DJ	French (A)	0	30	0	0	30	2	Ν	
4	DJ	French (B)	0	30	0	0	30	2	Ν	
4	DJ	German A	0	30	0	0	30	2	Ν	
4	DJ	German (A)	0	30	0	0	30	2	Ν	
4	DJ	Russian (A)	0	30	0	0	30	2	Ν	
4	DJ	Russian (B)	0	30	0	0	30	2	Ν	
5	DJ	English (A)	0	30	0	0	30	2	N	
5	DJ	English (B)	0	30	0	0	30	2	N	
5	DJ	French (A)	0	30	0	0	30	2	N	
5	DJ	French (B)	0	30	0	0	30	2	Ν	
5	DJ	German A	0	30	0	0	30	2	N	
5	DJ	German (A)	0	30	0	0	30	2	N	
5	DJ	Russian (A)	0	30	0	0	30	2	N	
5	DJ	Russian (B)	0	30	0	0	30	2	Ν	
6	DJ	English (A)	0	30	0	0	30	3	Т	
6	DJ	English (B)	0	30	0	0	30	3	Т	
6	DJ	French (A)	0	30	0	0	30	3	Т	
6	DJ	French (B)	0	30	0	0	30	3	Т	
6	DJ	German A	0	30	0	0	30	3	Т	
6	DJ	German (A)	0	30	0	0	30	3	Т	
6	DJ	Russian (A)	0	30	0	0	30	3	Т	
6	DJ	Russian (B)	0	30	0	0	30	3	Т	

3.1.4. Verification methods of learning outcomes

Detailed rules and methods for the verification and assessment of learning outcomes that allow all learning outcomes to be verified and assessed are described in the Module Activity Sheets. Within the framework of a study programme, verification of learning outcomes is carried out in particular by means of the following methods: written, exam part practical, exam part oral, written pass, pass a part practical, oral pass, essay, colloquium, written test, observation of performance, portfolio, project presentation, written report, oral report, project report, written test.

Detailed information about the verification of learning outcomes achieved by students can be found in the Module Activity Sheets at the URL address: http://krk.prz.edu.pl/plany.pl?Ing=EN&W=C&K=H&TK=html&S=1491&C=2020

3.1.5. Programme content

Programme content (educational content) is consistent with the learning outcomes and takes into account, in particular, the current state of knowledge and research methodology in the discipline or disciplines to which the course of study is assigned, as well as the results of scientific activity in this discipline or disciplines. A detailed description of the program content is available in the Module Activity Sheets at the URL: http://krk.prz.edu.pl/plany.pl?lng=EN&W=C&K=H&TK=html& S=1491&C=2020, which are an integral part of the study programme.

Academic savoir - vivre	K_W15, K_U06, K_K03						
 Principles and norms of behavior in interpersonal relationships. The origin of the concept of etiquette. Legal and moral norms and custom. The universal rules of the etiquette.Personal culture.Importance of good morals in private and professional life.Stereotypy.Good manners and the image. Classic savoir-vivre rules Fundamentals of priority and principles of its application. Forms of showing respect. Welcome - the rules and exceptions. Titles in the academic environment.Personal and business procedures.Preferred - rules and exceptions. Wishes and congratulations.Faux pas. Communication etiquette. Standards of good behavior in interpersonal communication. Non-verbal communication. Telephone conversation label. Culture of correspondence.Network. Elegance of public speaking. Table index of dress. General dress rules. Clothing accessories. Fashion and extravagance.The most frequent weaknesses in the selection of individual elements of the outfit. The right outer appearance as part of the positive image. 							
Analytical chemistry	K_W04, K_U06, K_K01, K_K03						
 Classification of analytical chemistry, scale, accuracy and precision of a method. Analytical errors, statistical evaluation of results. General scheme of quantitative analysis. Classification and characteristics of methods of chemical analysis. Theoretical basis of volumetric analysis. Alkacymetric. Reductometry and oxidimetry. Complexometry. Precipitation analysis, effects accompanying solid product separation. Chemical calculations and analyses in the field of volumetric and gravimetric methods. Alkacymetric: determination of sulphuric acid concentration. Redox: determination of Fe(II) in Mohr's salt, determination of Cu(II) concentration. Complexometry: determination of Ca(II) or Mg(II) ionic concentration. Precipitation analysis: determination of Cl- ions concentration. Chemical calculations in the field of volumetric analysis and gravimetric methods. 							
Analytical methods in biochemistry	K_W04, K_W05, K_W10, K_U03, K_U09, K_K03						
• basics of MS, NMR and FTIR • fluorescent methods, electrophoresis, X-ray diffraction • biomolecule separation methods - chromatography, electrophoresis etc. advanced microsopic methods							

Biocatalysis Enzyme composition Enzymatic mechanisms Enzyme kinetics; 	K_W08, K_W10, K_W14, K_U03, K_U19, K_K01, K_K03 • Enzyme immobilisation • Industrial enzymatic processes; samples of
Biochemistry	K W05, K W14, K U06, K U09. K U15. K K01. K K03
 Biochemistry - the molecular logic of living organisms. • Structure and p Basic aspects of the protein structure and function. Myoglobin and he Enzyme kinetics and inhibition. Control of enzyme activity. • Carbohyd Glycoproteins. • Lipids. Structure of cell membranes. Mechanisms of transduction in cell. • Transduction of genetic information in cell. DNA s Identification of amino acids and proteins by specific colour reactions an simple sugars and polisaccharides by colour reactions. Hydrolysis of Hydrolysis of starch. • Isolation of cholesterol from a chicken egg you nitrate(III) levels in meat products with the Grieass reagent. • Metabolis and gluconeogenesis. • Cellular respiration and energetics: citric a determination of superoxide dismutase (SOD) activity from the yeast Sac gel electrophoresis and negative staining. • Native gel electrophoresis an filtration. • Separation of lysozyme from chicken egg by ion-exchange chr Bioderradable biopolymers and polymers 	roperties of amino acids. Proteins: a hierarchical organization of structure. moglobin. • Introduction to enzymes. Factors affecting enzyme activity. rates: monosaccharide, oligosaccharide and polysaccharides structures. f transport across cell membranes. • Membrane receptors and sygnal tructure and replication. RNA synthesis and splicing. Protein synthesis. • d TLC method. • Determination of protein concentration. • Identification of sucrose. • Separation of amylose and amylopectin from potato starch. k. Identification of cholesterol by Salkowski method. • Determination of sm: organisation and basic ideas. • Carbohydrate metabolism: glycolysis acid cycle, oxidative phosphorylation, photosynthesis. • Isolation and ccharomyces cerevisiae. • Identification of superoxide dismutase by native nd identification of LDH isoenzymes. • Isolation of macromolecules by gel romatography. • Identification of lysozyme by SDS-PAGE electrophoresis.
Mechanisms of the polymerization and their relationships with the real	process of synthesis. • Types of polymers in terms of their chemical and
supermolecular structure and physicmechanical properties • Factor Depolymerization processes, degradation and destruction of biodegra Synthetic polymers susceptible to biodegradation processes. Polymer pharmacy and medicine. Biodegradation of natural polymers. • Synthes high-molecular blood products based on gelatin. Evaluation of the proper	rs determining the chemical and biological resistance of polymers. dable polymers. Use of these processes in technology and industry. • ric biomaterials. • Natural polymers and their importance in the art of sis of poly (caprolactone) and evaluation of its properties. Preparation of ties of selected biopolymers used as packaging.
Bioinformatics	K_W01, K_W03, K_W14, K_U01, K_U02, K_U06, K_U08, K_U09, K_U10, K_K01
Introduction to bioinformatics. Basic concepts. E-learning in biotechn Computer representation and visualisation of biopolymer structures sequential information • PCA and cluster analysis methods in bioinformation of protein in PDB database	ology. • Data mining methods in bioinformatics • Sequence alignment • • Bioinformatic databases. Computer representation of structural and titics • Integrated sequence search system • 3D visualisation and analysis
Biomaterials processing	K_W04, K_W10, K_U16, K_K01
Classification of polymers. Basic definitions for polymer chemistry:mole Polymerization classifications • Technological metods of polymerization polyolefins. Hydrogels - fabrication and properties. • Ceramic biomaterial biomaterials technology • Alumina in bone surgery and dentals. Ma hydroxyapatite. • Methods for the preparation and properties of porous of Technology and properties of metallic biomaterials . Technology and properties of selected polymeric biomaterials. • Preparation and characterization of selected polymeric biomaterials · Preparation and characterization of selected polymeric biomaterials · Preparation and characterization of selected polymeric biomaterials · Preparation polymeric biomaterials · Preparation polymeric biomaterials · Preparation polymeric biomaterials · Preparation polymeric biomateri	ecular mass, polymerization degree, space building. Polyreactions types. : mass, solvent, suspensions and emulsion. Polyurethanes, polyamides, ls - introduction. Classification of ceramic biomaterials. Outline of ceramic nufacturing of alumina biomaterials. Manufacturing and properties of seramic biomaterials • Technology and properties of carbon biomaterials beeties of the composite biomaterials • Preparation and characterization of lected ceramic biomaterials.
Biomolecular process modeling	K_W03, K_W14, K_U01, K_U08, K_U19, K_K01, K_K03
• Fundamentals of molecular modeling methods: molecular mechanics, molecular quantum mechanics: ab initio methods, semi-empirical method optimization. Biomolecular structure data bases (Protein Data Bank PDB data bases, others). Information downloading from biological data bases modeling. Modeling of quantities describing physicochemical propertic Application of molecular modeling methods in studies of biochemical chemical reactions. Molecular docking: docking methods, scored function biological activity relation (2D-QSAR, 3D-QSAR, 4D-QSAR, 5D-QSAR, 6C CoMFA and CoMSIA methods. • 1. Biomolecular structure data bases ZINC, BindingDB), enzyme data bases, Entrez and ExPASy services, oth of the structure and physicochemical properties of biomolecules. Adjustr physicochemical properties of biological activity relations, transition states) using en example descriptors. 7. Examination of structure-biological activity relationships ((i.e. drug-protein) interaction.	, molecular dynamics, Monte Carlo method. Molecular forces. Basics of ds, methods exploiting density functionals (DFT). Biomolecular geometry b, PDBe, PDBj), ligand data bases (PubChem, ZINC, BindingDB), enzyme es. Elements of homological analysis. Basics of spatial protein structure es of biological and chemical systems. Ligand conformation analysis. system reactivities. Study of thermodynamics and transition states of ns of assessment of ligand–receptor interaction. Examination of structure- 5D-QSAR). Kinds of structural indexes and techniques of their calculation. (Protein Data Bank PDB, PDBe, PDBj), ligand data bases (PubChem, ners). Information downloading from biological data bases. 2. Visualization nent of protein and ligands 4. Modeling of protein structure. 5. Modeling of e of a reaction of a drug with a specific receptor. 6. Calculation of QSAR (QSAR). 8. Molecular docking processes. Investigation of ligand-receptor
Biophysics	K_W02, K_U06, K_K01
• The bases of the biophysics. Classification of biomolecules. Classific molecules structure. Interactions of molecules and macromolecules. • M biopolymers:- the method of light scattering statistically (Rayleigh), dyna method of sedimentation, MALDI-TOF, Gel Permeation Chromatograph systems and processes. Phase transitions. Entropy, enthalpy, free ene mass transportation, viscosity of polymers. Thermal analysis method temperature-modulated DSC, TMA, thermal conductivity. • The chosen spectroscopic (IR, spectroscopy Raman, NMR), X-ray spectroscopy (S techniques: optical microscopy, electron microscopy, atomic force micro proprieties of polymers (dynamic mechanical analysis -DMA). Mechanic: hearing system; visual system, respiration system, the circulation blood s temperatures and moisture, the electric and magnetic field; the radiation in Bioprocess engineering	cation or biomacromolecules (biopolymers). Chemical structures. Super- ethods of the determination of molecular masses and their distribution for mics (quasi-elastic) - the viscometery, osmometery, bulio- and cryoscopy, by (GPC) or Self-Exclusion Chromatography (SEC). • Biothermodynamic ergy, heat capacity biopolymers. The phenomena of thermo conductivity is for examination the thermal proprieties of biopolymers: TGA, DSC, physical methods for the investigations of the structure of biopolymers: SAXS, WAXS), degree amorphous and crystalline phases. Microscopic biscopy (AFM). Static and dynamic methods to determine the mechanical al modules. • The elements of the biophysics of organs: the sense of the system. The influence of physical factors on alive organisms (mechanical, ionizing and non-ionizing). Spectroscopy and scanning, topography NMR.
Heat Transfer: (Eived) Stationen: Heat Transfer, Heat Transfer, Driving	N_WIU, N_WIU, N_UI2, N_KUI
• near transfer: (rixed) stationary Heat transfer, Heat Transfer Driving Thermal Conduction Coefficient, Heat Non- And Conductors, Thermal Newton Equation, Heat Transfer Cases, Criterial Numbers And Equatio Overall Heat Transfer, Newton Equation for Overall Heat Transfer, Ove Basis Of Heat Exchanger Design. Mass Transfer: (Fixed) Stationary Ma Coefficients, Mass Transfer Resistance, Kinds of the Mass Diffusion, Ma Cases, Criterial Numbers And Equations, Overall Mass Transfer, Newto Disappearance of Mass Transfer Resistance, Overall Mass Transfer Driv Transfer – Basic Knowledge Absorption; A) Process Definition, B) Statio Notations, C) Process Kinetics, Mass and Overall Mass Transport in th Absorption, Chemisorption. • Distillation And Rectification: Points A) to F) Equilibrium for Binary Component System, Kinds of the Equilibrium Aberrations From Raoult Law, Azeotropes, Differential Distillation, Equil Batch Rectification, Continuous Rectification, Heat and Mass Balances	rorec, kinds of the reat transfer: Thermat Conduction, I-St Fourier Law, Conduction Across Wall, Heat Transfer Resistance, Heat Convection – ns, Heat Radiation, Heat Screen Meaning, Heat Losses to Environment, erall Heat Transfer Coefficient, Some Cases of Transient Heat Transfer, iss Transfer, Driving Force, Mass Diffusion, I-St Fick Law, Mass Diffusion ass Diffusion, Mass Convection, Newton Kinetic Equation, Mass Transfer in Equation for Overall Mass Transfer, Overall Mass Transfer Coefficient, ring Force, Basis Of Mass Exchanger Design. Concurrent Heat and Mass C's of the Process – Absorption Equilibrium, Kinds of the Equilibrium Line e Absorption, D) Mass Balance of the Absorption, Operation Line of the rall Mass Transfer Driving Force int Absorption, F) Dynamic Model of the Analogous to the Same Above with the Following Differences: Distillation Line Notations - for Ideal System – Raoult Law, Nonideal Systems – ibrium Distillation, Mass and Overall Mass Transport in the Rectification, s of the Rectification, Heat and Mass Balances of the Operated Plate,

System, Ideal System – Nernst Law, Nonideal Systems – Aberrations Fi Extraction, Minimum and Maximum of the Extrahent Mass, Kinds of the Extraction, Dynamic Model of the Column Extraction.	rom Nernst Law, Stepping Extraction Parallel-Current and Counter-Current Mathematics Solution of the Mentioned Above Extraction Cases, Column
Bioreactors	K_W07, K_W11, K_U15, K_U19, K_K01
 Definition of bioprocess engineering. Stoichiometry of microbial growt enzymatic reactions. Bioreactors: batch reactor, chemostat, chemosta column reactors, fluidization reactors, membrane reactors. Designing of 	th, oxygen balance. Kinetics of cells growth, product formation, kinetics o t with recycle, multistage chemostat systems, plug flow reactor, bubble bioreactors. Scaling-up and scaling-down.
Biosensors	K W10, K U06, K K01
Classification of chemical sensors. Theoretical basics of chemical re conductometric sensors. • Optical sensor, physics of optical fibers, optic of piezo- and pyroelectricity, chemical layers of mass sensors. • Therm chemical sensors in industrial analytical control, clinical chemistry and e	accognition. • Electrochemical sensors - potentiometric, amperometric and al fiber sensors – design, operation and examples. • Mass sensors, basic nal sensors - pyroelectric sensors, gas catalytic sensors. • Applications o nvironment protection. Prospects of development of chemical sensors.
Cell biology	K_W05, K_W14, K_U06, K_U09, K_U15, K_K01, K_K03
 Similarities and differences in structure of prokaryotic and eukary components. • Evolution and function of subcellular structures. • Mecha cycle and course of mitosis and meiosis. • Basic laboratory methods tissues. • Isolation of chloroplasts and mitochondria from the pla chromatography. 	otic cells. • Basic research methods applied in studies of cell and its anisms of cell membrane transport. • Signal transduction in the cell. • Cel and safety rules and regulations. • Microscopic observations of cells and int cells. • Separation of chlorophylls and carotenoids be thin laye
Chemical and biotechnological equipment	K_W11, K_W13, K_U17, K_K01
Classification of chemical apparatus. Fundamentals of transport pheno resistance. Liquid outflow from the tank • Apparatus for mixing, aeratio and fermenters - construction solutions and the principle of operation. E Slurry separation by deposition, sedimentation, flotation, classificatior apparatus. • Heat exchangers, evaporators and sterilizers. • Apparatus for Apparatus for extraction and crystallization	mena of heat and mass momentum. The nature of the fluid flow. Fluid flow on and disintegration of biomass. Demand for mixing power. • Bioreactors Bioprocesses in fluidised bed. • Characteristics of comminuted materials. n. • Filtration and spinning of biological suspensions, process rules and for absorption and adsorption. • Apparatus for distillation and rectification.
Chemistry and technology of biofuels	K_W05, K_U15, K_U19, K_K05
• 1. Introduction to the course. Requirements for the completion of the (organic raw materials) as feedstocks for biofuels production. First- and of analysis of biofuels • Conversion of cellulose and lignocellulosie. A production • Future trends in biofuels, directions of research • Methods of	course. The role of fossil liquid fuels and biofuels. • Biomass and wastes next-generation biofuels. Fermentation in production of biofuels. Methods Algae biomass in biofuels. • Gaseous bio-fuels - properties, applications of analysis of biofuels • Biodiesel synthesis • Production of bioethanol
Chemistry of cosmetics	K_W05, K_W10, K_U02, K_U16, K_K02
oral care, colour cosmetics, aerosols and perfumes. Manufacture and assessment, legislation, microbial preservation, performance evaluation Nomenclature of Cosmetic Ingredients. Threats to the environment and experience creating and evaluating hair and skin products. Emulsions i gels.	Control: packaging, production, quality assurance, product stability, safety on and market research. Laying the cosmetic formulations. Internationa human health posed by some of the ingredients of cosmetics. • Hands-or including creams and lotions; surfactant systems including shampoos and
Computer science	K_WU3, K_W14, K_U02, K_U08, K_KU1
 Definitions of basic concepts, the algorithm, computer program, components of a computer and their functions. Multiprocessor computer tools. MS-Office programs: Word, PowerPoint. • Computer viruse: Telecommunications systems. Websites construction. Legal, ethical a algorithms: data flow diagram, program flow diagram. Computer program The basic elements of the configuration of software environment and defined in C++. • Main control statements in C++. Static and dynamic v loops. The definition of functions. Program testing according to princip Internet-based education. • Text editor. Development of laboratory data program and passing the subject. • Creating of process and technologic: Computer-aided research 	Computer system, informatic system, the operating system, the main er. • Operating systems and their types. Computer programs, utilities and s, protection and prevention. Computer networks (Internet, Intranet) and social issues of computer science. • Representation formalisms on n development cycle: specification, design, coding, testing, documentation compiler for C++. Construction of programs and units in C++. Data types variables. Computer memory management. Programming of branches and les of software engineering. • The Windows operating system. Networks ata. Preparing of presentation. • Chemical structure editors. • Basics of pment of the algorithm, implementation of procedures, running & testing al diagrams. • Practical test covering skills acquired on L01-L05.
Strategies of searching chemical structures and metabolic database	s • Chemical structure formats 3D visualization of chemical structures
CAOS - computer prediction of biodegradation pathways for chemical onew drugs • Chemical similarity	compounds and generation of combinatorial libraries • Computer design c
Drug design and synthesis	K_W10, K_W12, K_U16, K_U17, K_K03
• Drug from the idea for the implementation: Leading Structure - Pharmacokinetics; QSAR; Combinatorial Synthesis. Laboratory: chosen seeking the medicine, choice of the site of action of the medicine, choic solid phase - bases and assumptions. • Combinatorial synthesis - idea, r structure of the active compound. • Pharmacophore, isostere - definitior betablockers and statins. • Elements of strategy of planning the synthe- the synthesis of medicines/drugs in including analysis of the applied Performing five laboratory exercises from the area of the isolation, the s instructions placed on sd of the coordinator, before beginning of the cycl	search; relation between the structure and the activity of the drug methods of synthesis of drugs. • Definition of the medicine/drug, stages of the of the biological assay, seeking the leading structure. • Synthesis on the methods. • Isolation and purification of the active ingredient, elucidation the n, examples. • Synthesis of the most populardrugs e.g. prazole, antibiotics sis of new potential drugs. The most popular types of the reaction used i synthesis in the pharmaceutical industry. • Written passing the subject. synthesis and analysis of medical products during of 5 lesson according t e classes.
Engineering graphics	K_W03, K_W14, K_U02, K_U06, K_K01
 Technical letter • Rectangular projections, axonometric views, views drawings. • Processes, apparatus and devices used in chemical ter Preliminary information, start AutoCAD and basic settings. • Exercises f functions. • Creating a simple technical drawing - projection and dimer drawings of machines parts and chemical apparatus 	and sections. • Technical charts. • Rules for dimensioning. • Assemble chnology and biotechnology and their standardized graphic symbols. For features and commands of AutoCAD. • Application of AutoCAD specifi asioning of a complex geometric solid. • Making production and assemble
Engineering project	K_U01, K_U03, K_U04, K_U06, K_U08, K_U09, K_U10, K_K01, K_K04
Getting to know the professional literature on the subject • Experim	ental measurements, the creation of a computer program or other wor

Dioussi agaitori or organic compounds. • Diotechnological methods of w	biodegradability adsorbents. • Microbiological degradation of cellulose. •
Enzymology	
Enzyme structure and function. • Factors influencing enzyme activity	y. • Methods used in enzyme activity studies. • Enzyme reaction kinetics. •
Enzymes in biotechnology. • Enzyme activity measurements methodolo	gy. • Enzyme activity analysis in biotechnological products.
Forensic biochemistry	K_W12, K_W14, K_U02, K_U16, K_K03
 Metabolites - structures, applications, biological function • Eleme organism, • Basics of chemical and biochemical analysis in forensic analysis • Introduction to analysis of analytical results, basics of interp oragnic material analysis, analysis of dyes, paints, microscopic ana methods • Detection of blood stains • Fingerprint analysis methods physiological fluids 	nts of toxicology, harmful compounds - classification, effects on human sciences, application of these methods, instrumental methods in forensic retation of MS, NMR, FTIR spectra • Serology, DNA profiling, inorganic and lyses. • analysis of structures of harmful compounds with spectroscopic • Quantification of heavy metals in urine • LCMS analysis of narcotics in
General and inorganic chemistry	K_W04, K_U06, K_K01, K_K03
 Struture of atom. Periodicity of chemical properties. Ionization energy. Covalent bonds. Formal oxidation state. Molecular orbital and valence equation. Units of matter. Solid state. Ionic and molecular crystals. I action law. • The basic calculations: fundamental laws. Concentration mixing of solutions. Stoichiometric calculations based on chemical re Oxidation and reduction reactions. Gas laws. Chemical static, mass properties. 2. Electrolytes. Electrolytic dissociation. Strong and we Properties of elements. Inorganic compounds, preparation methods of D-block elements. Crystal field theory. Spectroscopic and magnetic compounds. • 1. Electrolytic dissociation of strong and weak electrolyte 2. Dissociation constant and degree. 3. Buffer solutions. 4. Hydroly laboratory operations and equipment. Synthesis of inorganic comp reactions. 4. Solutions: preparation and concentration calculations. 5. 6. Buffer solutions. 7. Inorganic complexes. 8. Hydrolysis - the hy conversion of solid compounds. 10. Oxidation and reduction reactions. 	A electron affinity, electronegativity. Metal and non-metals. Chemical bonds. bond theory. States of matter. Phase transistions. Gas state. Ideal gas state Liquids and solutions. Units of concentration. Chemical equilibrium. Mass of solutions: way of expression, conversion of concentration, dilution and eaction equation. Elemental and real chemical formula. Yield of reaction. s action law, chemical equilibrium. • 1. Liquids and solutions. Colligative ak electrolytes. 3. Acids and bases. Ampholytes. Buffer solutions. 4-7. end properties. Main group metals (1, 2, 13). Elements of group 15-18. 8. c properties. 9. F-block elements. 10. Complex compounds. Additional es. Activity and activity coefficient, ionic strength, ionic product of water, pH. sis, the hydrolysis constant and degree. 5. Solubility product. • 1. Basic ounds. 2. Classification of inorganic compounds. 3. Types of chemical electrolytes – electrolytic degree and constant, pH, alkacymetric indicators. rdrolysis constant and degree. 9. Precipitation, dissolving and chemical
General microbiology	K_W07, K_W14, K_U06, K_U09, K_U15, K_K01, K_K03
 The structure and function of prokaryotic cells Metabolic diversity of the environment The role of microorganisms in biogeochemical cycle Isolation and preliminary identification of microorganisms 	f microorganisms • Bacterial secondary metabolites and their importance in es • Interaction of microorganisms • The basic microbiological techniques •
Genetic engineering	K_W06, K_W09, K_W12, K_W14, K_U06, K_U09, K_U15, K_U19, K_K01, K_K03, K_K07
mutagenesis. Techniques for transgenic plants and animals. Purifica	a eukaryotic cells. Manipulation of gene expression. Controlled in-vitro
mutagenesis. Techniques for transgenic plants and animals. Purifica methods of analysis: affinity chromatography, electrophoresis and imm the diversity of DNA sequences deposited in the databases. Finding primers for the selected sequence and in any orientation, with attached The construction of restriction map, characterization of restriction enz Designing SNP detection methods (PCR-RFLP, minisequencing) • App and overexpression. Transformation of transgenic E. coli with pET ex discriminating medium. The chemical transformation and electrotrar	a eukaryotic cells. Manipulation of gene expression. Controlled In-Vitro ation and identification of the recombinant proteins obtained by different iunoblotting, mass spectrometry. • Evolution of NCBI model. Understanding and selective use of information in planning experiments. Designing PCR d restriction sites occurring at the start and stop codons for protein domains. ymes. Cloning without the use of restriction enzymes. Codon optimization. blication of the techniques of genetic transformation for cloning, sequencing pression vector or pGlo coding GFP protein. Cultivation of bacteria on the isformation. Isolation of colonies containing cloned gene. Preparation of
mutagenesis. Techniques for transgenic plants and animals. Purifica methods of analysis: affinity chromatography, electrophoresis and imm the diversity of DNA sequences deposited in the databases. Finding primers for the selected sequence and in any orientation, with attached The construction of restriction map, characterization of restriction enz Designing SNP detection methods (PCR-RFLP, minisequencing) • App and overexpression. Transformation of transgenic E. coli with pET ex discriminating medium. The chemical transformation and electrotrar competent bacteria and plasmids for transformation.	d eukaryotic cells. Manipulation of gene expression. Controlled In-Vitro ation and identification of the recombinant proteins obtained by different nunoblotting, mass spectrometry. • Evolution of NCBI model. Understanding and selective use of information in planning experiments. Designing PCR d restriction sites occurring at the start and stop codons for protein domains. ymes. Cloning without the use of restriction enzymes. Codon optimization. Dication of the techniques of genetic transformation for cloning, sequencing pression vector or pGlo coding GFP protein. Cultivation of bacteria on the isformation. Isolation of colonies containing cloned gene. Preparation of
mutagenesis. Techniques for transgenic plants and animals. Purifica methods of analysis: affinity chromatography, electrophoresis and imm the diversity of DNA sequences deposited in the databases. Finding primers for the selected sequence and in any orientation, with attachee The construction of restriction map, characterization of restriction enz Designing SNP detection methods (PCR-RFLP, minisequencing) • App and overexpression. Transformation of transgenic E. coli with pET ex discriminating medium. The chemical transformation and electrotrar competent bacteria and plasmids for transformation.	A eukaryotic cells. Manipulation of gene expression. Controlled In-Vitro ation and identification of the recombinant proteins obtained by different nunoblotting, mass spectrometry. • Evolution of NCBI model. Understanding and selective use of information in planning experiments. Designing PCR d restriction sites occurring at the start and stop codons for protein domains. ymes. Cloning without the use of restriction enzymes. Codon optimization. Jication of the techniques of genetic transformation for cloning, sequencing pression vector or pGlo coding GFP protein. Cultivation of bacteria on the isformation. Isolation of colonies containing cloned gene. Preparation of K_W06, K_W14, K_U03, K_U06, K_U09, K_K01, K_K03
 mutagenesis. Techniques for transgenic plants and animals. Purific: methods of analysis: affinity chromatography, electrophoresis and imm the diversity of DNA sequences deposited in the databases. Finding primers for the selected sequence and in any orientation, with attached. The construction of restriction map, characterization of restriction enzo. Designing SNP detection methods (PCR-RFLP, minisequencing) • App and overexpression. Transformation of transgenic E. coli with pET ex discriminating medium. The chemical transformation and electrotrar competent bacteria and plasmids for transformation. Genetics • Rules of inheritance, discoveries of Mendel, Morgan, basis of the qua genetic material • Mutations, chromosomal aberrations, aneuploidy, parents, including prediction of Blood type and genetic diseases in hu animals 	A cukaryotic cells. Manipulation of gene expression. Controlled In-Vitro ation and identification of the recombinant proteins obtained by different unoblotting, mass spectrometry. • Evolution of NCBI model. Understanding and selective use of information in planning experiments. Designing PCR d restriction sites occurring at the start and stop codons for protein domains. ymes. Cloning without the use of restriction enzymes. Codon optimization. blication of the techniques of genetic transformation for cloning, sequencing pression vector or pGlo coding GFP protein. Cultivation of bacteria on the isformation. Isolation of colonies containing cloned gene. Preparation of K_W06, K_W14, K_U03, K_U06, K_U09, K_K01, K_K03 ntitative and population genetics • The structure of DNA and organization of polyploidy • Genetic crosses, determining the phenotype of offspring and mans and prediction of the outcomes of breeding procedures in plants and
 mutagenesis. Techniques for transgenic plants and animals. Purific: methods of analysis: affinity chromatography, electrophoresis and imm the diversity of DNA sequences deposited in the databases. Finding primers for the selected sequence and in any orientation, with attached The construction of restriction map, characterization of restriction enz Designing SNP detection methods (PCR-RFLP, minisequencing) • App and overexpression. Transformation of transgenic E. coli with pET ex discriminating medium. The chemical transformation and electrotrar competent bacteria and plasmids for transformation. Genetics • Rules of inheritance, discoveries of Mendel, Morgan, basis of the qua genetic material • Mutations, chromosomal aberrations, aneuploidy, parents, including prediction of Blood type and genetic diseases in hu animals Immunological techniques in biotechnology 	deukaryotic cells. Manipulation of gene expression. Controlled In-Vitro ation and identification of the recombinant proteins obtained by different iunoblotting, mass spectrometry. • Evolution of NCBI model. Understanding and selective use of information in planning experiments. Designing PCR d restriction sites occurring at the start and stop codons for protein domains. ymes. Cloning without the use of restriction enzymes. Codon optimization. blication of the techniques of genetic transformation for cloning, sequencing pression vector or pGlo coding GFP protein. Cultivation of bacteria on the isformation. Isolation of colonies containing cloned gene. Preparation of K_W06, K_W14, K_U03, K_U06, K_U09, K_K01, K_K03 ntitative and population genetics • The structure of DNA and organization of polyploidy • Genetic crosses, determining the phenotype of offspring and mans and prediction of the outcomes of breeding procedures in plants and K_W05, K_W09, K_W14, K_U06, K_U09, K_U15, K_U17, K_K01, K_K03
 mutagenesis. Techniques for transgenic plants and animals. Purific: methods of analysis: affinity chromatography, electrophoresis and immr the diversity of DNA sequences deposited in the databases. Finding primers for the selected sequence and in any orientation, with attached. The construction of restriction map, characterization of restriction enz Designing SNP detection methods (PCR-RFLP, minisequencing) • App and overexpression. Transformation of transgenic E. coli with pET ex discriminating medium. The chemical transformation and electrotrar competent bacteria and plasmids for transformation. Genetics • Rules of inheritance, discoveries of Mendel, Morgan, basis of the qua genetic material • Mutations, chromosomal aberrations, aneuploidy, parents, including prediction of Blood type and genetic diseases in hu animals Immunological techniques in biotechnology • Structure of animal and human immune system, lymphoid organs – p system • Antigens and the mechanisms of their identification. Char Mechanism of receptor activation in B and T cells by an antigen: components of immune system, structure of the immune system T or Obtaining monoclonal antibodies using the method of in vivo and vivo vivo vivo vivo vivo vivo vivo viv	d eukaryotic cells. Manipulation of gene expression. Controlled In-Vitro ation and identification of the recombinant proteins obtained by different iunoblotting, mass spectrometry. • Evolution of NCBI model. Understanding and selective use of information in planning experiments. Designing PCR d restriction sites occurring at the start and stop codons for protein domains. ymes. Cloning without the use of restriction enzymes. Codon optimization. blication of the techniques of genetic transformation for cloning, sequencing pression vector or pGlo coding GFP protein. Cultivation of bacteria on the isformation. Isolation of colonies containing cloned gene. Preparation of K_W06, K_W14, K_U03, K_U06, K_U09, K_K01, K_K03 ntitative and population genetics • The structure of DNA and organization of polyploidy • Genetic crosses, determining the phenotype of offspring and mans and prediction of the outcomes of breeding procedures in plants and K_W05, K_W09, K_W14, K_U06, K_U09, K_U15, K_U17, K_K01, K_K03 wrimary and secondary, cytokine receptors and their properties, complement acteristics of innate and acquired immunological response mechanisms. antigen processing and presentation • Signal transmission between the ell receptors • In vivo production of monoclonal and polyclonal antibodies. Itro immunization, and the method of genetic engineering • Methods of the es, using the ELISA method, immunoprecipitation, immunobloting, flow apy. Classic and recombinant vaccines
 mutagenesis. Techniques for transgenic plants and animals. Purific: methods of analysis: affinity chromatography, electrophoresis and imm the diversity of DNA sequences deposited in the databases. Finding primers for the selected sequence and in any orientation, with attached The construction of restriction map, characterization of restriction enz Designing SNP detection methods (PCR-RFLP, minisequencing) • App and overexpression. Transformation of transgenic E. coli with pET ex discriminating medium. The chemical transformation and electrotrar competent bacteria and plasmids for transformation. Genetics • Rules of inheritance, discoveries of Mendel, Morgan, basis of the qua genetic material • Mutations, chromosomal aberrations, aneuploidy, parents, including prediction of Blood type and genetic diseases in hu animals Immunological techniques in biotechnology • Structure of animal and human immune system, lymphoid organs – p system • Antigens and the mechanisms of their identification. Char Mechanism of receptor activation in B and T cells by an antigen: components of immune system, structure of the immune system T cobtaining monoclonal antibodies using the method of in vivo and in v qualitative and quantitative evaluation of detectable macromolecule cytometry • The use of recombinant antibodies in a diagnosis and there. 	deukaryotic cells. Manipulation of gene expression. Controlled In-Vitro ation and identification of the recombinant proteins obtained by different iunoblotting, mass spectrometry. • Evolution of NCBI model. Understanding and selective use of information in planning experiments. Designing PCR d restriction sites occurring at the start and stop codons for protein domains. ymes. Cloning without the use of restriction enzymes. Codon optimization. Dication of the techniques of genetic transformation for cloning, sequencing pression vector or pGlo coding GFP protein. Cultivation of bacteria on the isformation. Isolation of colonies containing cloned gene. Preparation of polyploidy • Genetic crosses, determining the phenotype of offspring and mans and prediction of the outcomes of breeding procedures in plants and K_W05, K_W09, K_W14, K_U06, K_U09, K_U15, K_U17, K_K01, K_K03 wrimary and secondary, cytokine receptors and their properties, complement acteristics of innate and acquired immunological response mechanisms. antigen processing and presentation • Signal transmission between the ell receptors • In vivo production of monoclonal and polyclonal antibodies. Itro immunization, and the method of genetic engineering • Methods of the es, using the ELISA method, immunoprecipitation, immunobloting, flow upy. Classic and recombinant vaccines
 mutagenesis. Techniques for transgenic plants and animals. Purific: methods of analysis: affinity chromatography, electrophoresis and imm the diversity of DNA sequences deposited in the databases. Finding primers for the selected sequence and in any orientation, with attached. The construction of restriction map, characterization of restriction enz Designing SNP detection methods (PCR-RFLP, minisequencing) • App and overexpression. Transformation of transgenic E. coli with pET ex discriminating medium. The chemical transformation and electrotrar competent bacteria and plasmids for transformation. Genetics • Rules of inheritance, discoveries of Mendel, Morgan, basis of the qua genetic material • Mutations, chromosomal aberrations, aneuploidy, parents, including prediction of Blood type and genetic diseases in hu animals Immunological techniques in biotechnology • Structure of animal and human immune system, lymphoid organs – p system • Antigens and the mechanisms of their identification. Char Mechanism of receptor activation in B and T cells by an antigen: components of immune system, structure of the immune system T c Obtaining monoclonal antibodies using the method of in vivo and in v qualitative and quantitative evaluation of detectable macromolecule cytometry • The use of recombinant antibodies in a diagnosis and thera ln vitro cultures • Definition of plant in vitro culture. Application of plant in vitro culture • Methods of terilization for glasware, media, tool. • Media used in plant plant hormones, aminoacids, sugars, geling agents). Composition asecondary explants. Sources of primary explants. Methods of primary explants. • Work s equipment. • Preparation of medium for carrot callus induction • Ind microorropafation of wild strawberry. • Transparation of micro activation of medium for carrot callus induction • Ind 	Deckaryotic Cells. Manipulation of gene expression. Controlled In-Vitro ation and identification of the recombinant proteins obtained by different junoblotting, mass spectrometry. • Evolution of NCBI model. Understanding and selective use of information in planning experiments. Designing PCR d restriction sites occurring at the start and stop codons for protein domains. ymes. Cloning without the use of restriction enzymes. Codon optimization. Dication of the techniques of genetic transformation for cloning, sequencing pression vector or pGlo coding GFP protein. Cultivation of bacteria on the isformation. Isolation of colonies containing cloned gene. Preparation of polyploidy • Genetic crosses, determining the phenotype of offspring and mans and prediction of the outcomes of breeding procedures in plants and the start and secondary, cytokine receptors and their properties, complement acteristics of innate and acquired immunological response mechanisms. antigen processing and presentation • Signal transmission between the ell receptors • In vivo production of monoclonal and polyclonal antibodies. itro immunization, and the method of genetic engineering • Methods of the es, using the ELISA method, immunoprecipitation, immunobloting, flow processica and recombinant vaccines K_W14, K_U06, K_U09, K_M14, K03 Organisation of in vitro culture laboratory: equipment, rules of sterile work, • in vitro culture laboratory: equipment, rules of sterile work, • in vitro culture laboratory: equipment, rules of sterile work, • in vitro culture laboratory: equipment inforced restriction and expanding in vitro culture. Microspore culture and production of afety • Rools of sterile work in plant in vitro culture and production of afety • Rools of sterile work in plant in vitro culture and production of afety • Rools of sterile work in plant in vitro culture and production of afety • Rools of sterile work in plant in vitro culture and production of mature or emproves </td
 mutagenesis. Techniques for transgenic plants and animals. Purific: methods of analysis: affinity chromatography, electrophoresis and imm the diversity of DNA sequences deposited in the databases. Finding primers for the selected sequence and in any orientation, with attached The construction of restriction map, characterization of restriction enz Designing SNP detection methods (PCR-RFLP, minisequencing) • App and overexpression. Transformation of transgenic E. coli with pET ex discriminating medium. The chemical transformation and electrotrar competent bacteria and plasmids for transformation. Genetics Rules of inheritance, discoveries of Mendel, Morgan, basis of the quagenetic material • Mutations, chromosomal aberrations, aneuploidy, parents, including prediction of Blood type and genetic diseases in hu animals Immunological techniques in biotechnology Structure of animal and human immune system, lymphoid organs – p system • Antigens and the mechanisms of their identification. Char Mechanism of receptor activation in B and T cells by an antigen: components of immune system, structure of the immune system T or Obtaining monoclonal antibodies using the method of in vivo and in v qualitative and quantitative evaluation of detectable macromolecule cytometry • The use of recombinant antibodies in a diagnosis and there In vitro cultures Definition of plant in vitro culture. Application of plant in vitro culture in obtaining application of in vivo action of in vivo application secondary explants. Sources of primary explants. Methods of primary equilibative induction in vivo action in vivo application. • Root culture. • Application of plant protoplasts. • Work sequipment. • Preparation of medium for carrot callus induction. • Ind micropropafation of wild strawberry • Transpantation of	A eukaryotic Ceils. Manipulation of gene expression. Controlled in-Vitro ation and identification of the recombinant proteins obtained by different junoblotting, mass spectrometry. • Evolution of NCBI model. Understanding and selective use of information in planning experiments. Designing PCR d restriction sites occurring at the start and stop codons for protein domains. ymes. Cloning without the use of restriction enzymes. Codon optimization. Dilication of the techniques of genetic transformation for cloning, sequencing pression vector or pGlo coding GFP protein. Cultivation of bacteria on the isformation. Isolation of colonies containing cloned gene. Preparation of polyploidy • Genetic crosses, determining the phenotype of offspring and mans and prediction of the outcomes of breeding procedures in plants and mans and prediction of the outcomes of breeding procedures, complement acteristics of innate and acquired immunological response mechanisms. antigen processing and presentation • Signal transmission between the ell receptors • In vivo production of monoclonal and polyclonal antibodies. Itro immunization, and the method of genetic engineering • Methods of the es, using the ELISA method, immunoprecipitation, immunobloting, flow app. Classic and recombinant vaccines K_W14, K_U06, K_U09, K_U19, K_K03 Organisation of in vitro culture laboratory: equipment, rules of sterile work, • in vitro culture: lypes of media, ingredients (macro- microelemets, vitamins, and preparation of Murashige nad Skoog medium 1962. • Primary and expands harvesting. • Organogenesis in in vitro culture. Micropropagation as n, maintenance, application. • Suspension culture: Induction maintenance, yo vitas free plants. • Anther culture. Microspore culture and production of afety • Rools of sterile work in plant in vitro culture and production of mature rye embryos.

Instrumental analysis

K_W04, K_W10, K_U16, K_U17, K_K01

• Analytical process, its elements and statistical evaluation of each step. Analysis of elements and compounds by spectroscopic methods. Atomic Emission Spectroscopy - basis of the method, methods of sample atomization and excitation, applications. Atomic absorption spectroscopy Molecular spectroscopy in the ultraviolet and visible light. Infrared spectroscopy. Spectra recording techniques, methods of quantitative and qualitative analysis. Fundamentals of nuclear magnetic resonance spectroscopy. The quantitative and structural analysis based on the NMR spectra. Fundamentals of mass spectrometry. Interpretation and application of analytical mass spectra for organic compounds. Chromatographic methods for separation of mixtures. Basic principles and classification. Theoreticasl basis of separation process. Retention mechanisms and parameters. Separation efficiency. Definition and determination of resolution index, theoretical plate number, selectivity factor. Separation techniques in liquid chromatography - adsorption chromatography, partition - normal/reverse chromatography, ion-exchange chromatography , gel filtration chromatography. Selection of the chromatographic conditions - rules for the selection of the stationary and mobile phases. High Performance Liquid Chromatography HPLC and thin-layer HPTLC. Isocratic and gradient techniques, instrumentation. Gas chromatography. The rate theory of chromatography - band broadening, column efficiency. Optimization of column performance. Chromatographic methods of qualitative and quantitative analysis. Potentiometric methods. Design, operation and application of the selected ion-selective electrodes. Conductometry and its analytical application. Voltammetric methods - linear-sweep LSV, cyclic CV, and stripping CSV, ASV techniques. Quantitative and qualitative analysis. Selected applications in analytical laboratory and industrial applications, criteria for the method selection. • Identification of components in the mixture of hydrocarbons and their determination by gas chromatography GC. Determination of hydrocarbons and their derivatives using HPLC. Analysis of the composition of mixtures of organic compounds using a GC-MS. Identification and a quantitative analysis by IR spectroscopy. Determination of the concentration of substances by the UV-VIS spectroscopy. Structural analysis on the base of 1H-NMR spectra. Determination of the element content in the solutions by atomic absorption spectroscopy (AAS). Polarimetric determination of sucrose in aqueous solution. Quantitative determination of elements by cyclic voltammetry CV. Determination of iodide and chloride by potentiometric precipitation titration. Determination of the concentration of the phenol by conductrometric titration method.

Mathematics

K_W01, K_U06, K_K01

• Elements of mathematical logic and set theory. Basic properties functions of one real variable, polynomials, Horner's scheme, rational functions and other elementary functions, arc functions. • Sequences of numbers: monotonicity and boundedness of sequences, limit of a sequence, theorems about existence of a limit, Napierian base and its applications. Series of numbers: properties of series of numbers, tests for convergence of series, tests for divergence of series. Limit and continuity of function of real variable: definitions of limit, counting properties of limits of functions notion of continuity of a function. Asymptotes of a function. • Differential calculus of function of one real variable: notion of derivative of function derivatives of higher order, derivatives of basic elementary functions, derivative of composite function, De l'Hospital's theorem, mean value theorems, investigation of monotonicity and determination of extrema of functions, convex and concave functions, points of inflexion of graph of function, investigation of the behavior and systematic procedure in graphing of function. • Integral calculus of function of one real variable: notions of primitive function and indefinite integral, integration by parts and by substitution, integration of rational functions, integration of irrational functions, integration of trigonometric functions. Notion of definite integral, applications of definite integrals, improper integrals. • The set of complex numbers: canonical and polar form of a complex number, de Moivre's formula, calculation of power and root of complex numbers. Matrices: definition, operations on matrixes and its properties, square matrices, determinant and its properties, inverse matrix, rank of a matrix Systems of linear equations: Kronecker-Capelli's theorem • Ordinary differential equations: notions of general solution and particular solution, initial-value problem, ordinary differential equations of first-order, ordinary differential equations of second-order. • Elements of calculus of vectors and analytic geometry: vectors, operations on vectors and its properties, scalar product of vectors and its properties, vector product and triple scalar product of vectors, equations of a plane and of a straight line in the space. • Basic properties of function of several variables: limit and continuity of functions of several variables, partial derivatives, extrema of functions of several variables. Elements of field theory. Double and triple integrals

Molecular biology

K_W05, K_W06, K_W14, K_U06, K_U09, K_K01, K_K03

• Basic terminology in the field of molecular biology. Differences in the structure of genetic information between pro and eucariots. Introduction to labolatory procedures - isolation of nucleic acids. • Plasmids: structure, replication, biological function, transfer of information between cells, resiatance to unfavorable environmental conditions like antibitics, heave metal ions, sulfonamids, phenol and its derivatives. Virulence towards host, elimination of competitors from environment. Systematos of pasmids. Application of plasmids in genetic ingeniering; Ti, Ri, E. coli plasmids.Introduction to laboratorie; restriction enzymes, restriction mappiong • Structure of the bacterial chromosome. Recplication of the bacterial chromosome. Hethylation of bacteroal chromosome. RCR. • Transcription in procariots • Structure and function of bacterial ribosoms. Translation in procariotic cells. Posttranslational modification of proteins. • Surces of diversity in microorganisms. • Compartmentalization of eucariotic cells and its influence on structure of eucariotic chromosom. • E. coli plasmids isolation. • DNA electroforeis in agarose gel. • Digestion of DNA with restriction enzymes. • PCR • Restriction mapping , aanalizys of PCR products. • DNA ligation

Organic chemistry

K_W04, K_W10, K_U16, K_U17, K_K03

• Structure and isomerism of organic compounds. Efects of electronic displacements versus explanation of properties of organic compounds. Classification of organic compounds. Type of organic reactions and kinds of mechanisms. Chemical individuals. • Saturated and unsaturated hydrocarbons (alkene, alkadiene, alkyne, isoprenoids, steroids). Aromatic hydrocarbons. • Nomenclature of saturated, unsaturated and aromatic hydrocarbons. • Halogen derivatives of hydrocarbons, metalorganic compounds. Alcohols and phenols. Ethers. Aldehyde and ketones (aldol condensation). Mono- and polycarboxylic acids, halogen, hydroxy and oxo acids. Derivatives of carboxylic acid (halogens, anhydrides, amides). Esters (lactides, lactones, fats, soap, ester condensation). Nitrogen organic compounds: nitro compounds, amines, amino acids, peptides, proteins. Carbohydrates. Selected heterocyclic compounds. • Techniques and characterization of selected organic compounds.

Packeges of application software

K_W03, K_U02, K_U08

Application of MS Excel to tabelarize functions, create simple and advanced plot charts, perform array operations, simple statistical analysis, operations with macros and to solve chemical problems and model simple chemical processes using solver tool.
 Application of Origin Lab software to prepare professional 2D and 3D charts, to perform statistical processing of experimental data, to estimate parameters for equation describing experimental data, to perform differentiation and integration of discrete functions
 Application of Matlab and/or Maple programs for arithmetic calculations, algebraic transformations, solution of linear and nonlinear equations, inequalities and systems of equations, symbolic and numerical function integration and differentiation, matrix algebra, solving differential equations, graphing functions of one and two variables. Introduction to Programming in Matlab or Maple. Creation of simple programs for solving selected mathematical problems.

Physical chemistry

K_W04, K_U06, K_K01, K_K03

• The theory of perfect gases. Equations of state. Dalton's law and Amagat's law. The theories of real gases. The kinetic theory of perfect gases. Chemical thermodynamics. System. Surroundings. Work. Heat. Cyclic processes. Reversible processes. Isothermal reversible expansion of a gas. The first law of thermodynamics. Internal energy. Enthalpy. Heat capacity of gases, liquids and solids. Thermochemistry. Enthalpy of formation of compounds. Heat of solubility. Bond energy. The temperature dependence of reaction rate on temperature. The second and the third law of thermodynamics. Spontaneous transformations. Carnot cycle. Entropy. Entropy changes in reversible and irreversible processes. Entropy of mixing. Gibbs energy. Helmholtz energy. Differentials and derivatives of thermodynamic functions. The influence of pressure and temperature on free energy. Thermodynamic criteria of spontaneity of processes. Partial molar quantities. Chemical potential. Interatomic and intermolecular interactions. Viscosity and surface tension of liquids. Phase equilibria and diagrams. Three-component systems. Phase rule. Clapeyron equation. Clausius-Clapeyron equation. Vapor pressures over ideal solutions. Vapor pressures over real solutions. Solubilities of gases and liquids. Thermodynamics of ideal solutions. Activity. Activity coefficient. Boiling temperature – composition diagrams of two-component solutions. Azeotropes. Colligative properties. Colloidal solutions, micelles. Chemical equilibrium. A thermodynamic equilibrium constant. Chemical equilibrium in gas phase. Gibbs energy function. The influence of pressure and temperature on chemical equilibrium. Physicochemical calculations connected with theory of perfect and real gases, chemical thermodynamics, phase equilibria, colligative properties of solutions - Chemical kinetics. The rate and the order of reaction. Zero, first, second, third and fraction order reactions. Determination order and rate constant. Dependence of reaction rate and reaction rate constant on temperature.

reactions. Kinetics of enzymatic reaction. Basics of katalysis. Adsorption and molar conductance of strong and weak electrolytes. Transpor Electrochemistry. Semicells and electrochemical cells. Chemical reaction Thermodynamics of electrochemical cell. Physicochemical applications connected with chemical equilibium, chemical kinetics, simple, complex and electrodics. • Determination of molar refraction of organic liquids. D concentration. Determination of reaction order and rate. Determination equilibrium in three component existent Determination of adsorption is	a. Adsorption theories. Electrolyte solutions. Debye-Hückel theory. Specific ort numbers. Ionic mobility. Thermodynamics of electrolyte solutions. Ins in an electrochemical cell. Electromotive force of electrochemical cells. Is of semicells and electrochemical cells. • Physicochemical calculations and enzymatic reactions, theory of electrolyte solutions, ionic conductance letermination of surface tension of liquids. Determination of critical micelle n of thermical activation of a chemical reaction. Determination of phase otherm. Determination of liquids.
Determination of ΔG , ΔH and ΔS of chemical reaction. Electrochemical d	etermination of solubility constant.
• Acquainting with the rules of participation in classes and the condition facilities and equipment and safety rules in force during the course. I m on developing the student's basic motor skills. • Shaping general pr individual selection of sports activities (eg: football, volleyball, basket exercises). • Physical fitness test: Multistage 20 m Shuttle Run (Beep conditions. Discussion of swimming pool conditions and safety rules ap the aquatic environment: - face dipping, eye opening and orientation environment, familiarization with the buoyancy of water, - control of lying preparing for exercises in water. Learning how to behave in water in di backstroke style: lying on the back, slipping, correct leg work with a boar of proper coordination of lower and upper limbs. Learning free style: slip a board and without a board. Learning the proper work of the arms (swi how to coordinate the work of lower and upper limbs with the determina with a board and without boards on the chest and on the back, correct to breathing in a classic style. Learning to jump on the legs and on the heathing in a classic style. Learning to jump on the legs and on the heathing in a classic style.	hs for obtaining a pass. Discussion of the principles of safe use of sports plementation of various sets of warm-up exercises and exercises focused hysical fitness, motor coordination, endurance, flexibility, speed through ball, table tennis) or recreational physical activity (eg: badminton, gym o test). • Acquainting with the rules of participation in classes and credit plicable during exercise in the aquatic environment. • Initial adaptation to under the surface of the water, - mastery of breathing in the aquatic o on the breast and back, - plays and games in water. Warm-up exercises, fifcult and unusual situations: choking, shrinkage, sinking, etc. • Learning rd on the hips and without a board, proper work of the arms. Improvement ping on the chest, proper leg work combined with breathing, exercise with mming with a proper body with a proper breath and exhalation). Learning ation of proper breathing. Learning breaststroke style: proper work of legs work of arms in a classic style. Coordination of lower and upper limbs and d. • Fitness test: a 25-meter swimming trial chosen by the student.
	N_W01, N_W02, N_N00
 Measurements and physical units. Scalars and vectors. Derivatives in porthree dimensions, kinematics of rotational motion. Newton's laws of n Conservative forces Momentum, Impulse, and Collisions Dynamics of equations and complex numbers in physics, resonance. Mechanical was Introduction to thermodynamiscs: temperature and heat, Thermal proper laboratory classes. The uncertainty of the measurements. Introductors, electric charge and current-carrying wire in magnetic fie spectrometer. The phenomenon of magnetic induction. Electromagne optics. Introduction to modern physics and quantum mechanics, way Schrödinger equation, free particle, particle in potential well, stationary si 	physics. Coordinate Systems. • Motion along a straight Line, Motion in two notion, Applying Newton's laws Work, power and energy, Potential energy. Rotational Motion, Rotation of Rigid Bodies • Periodic motion, differential twes, wave phenomena, acoustics: sound and hearing • Fluid Mechanics, rites of matter, Laws of thermodynamics, entropy • Introduction to physical to electromagnetism: Electric charge and electric field, Gauss's law, Work current, resistance, circuits and Electromotive force . Magnetic field. The Id. The magnetic field induced by current flow. Hall effect, Cyclotron, mass tic waves: dispersion, Interference, diffraction, polarization. Application of e-particle duality of light and matter, probability and uncertainty principle tates, atomic structure, condensed matter Introduction to nuclear physics.
Plant biochemistry	K W05, K W06, K W14, K U09, K U18, K K03
Familiarization with biochemical specificity of plant cell • Identifying and	obtaining gene of desired function
Process design	K_W03, K_W13, K_W14, K_W19, K_U02, K_U08, K_U14, K_U15,
 Introduction to simulation programs. Basic rules for the selection of the (flow of information, analysis of degrees of freedom, the classification of reactors. The criteria for evaluation of the project - "pure" chemical tee heat exchangers. Basics of simultaneous methods. Calculation of sepa unit operations and analysis of the results (flash calculations, distillation their elements. The calculation of the basic operations of fluid transport as a tool for selection of parameters of the apparatus. 	ermodynamic models • An introduction to computing simulation processes simulation methods). The calculation of chemical reaction processes and chnology. Hierarchical method, an example application. Calculation of the irators with two liquid phases. • Design Heuristics. The calculation of basic I, extractive distillation, absorption). • Calculation of pipeline networks and (pumps, compressor, expander, valves). • The use of sensitivity analysis
Professional training	K U02, K K01, K K02, K K03
Training on safety work and anti fire regulations in plant/company/ir	istitution. Extending of knowledge gained on university in practical way.
Introducing to work of plant/company/institution and with their internal pro	K W03, K W05, K W12, K W14, K U03, K U08, K U09, K U19,
Protein engineering	K_K02
engineering • Protein engineering in-silico for the improvement of its biot	echnological properties
Purification of biotechnology products	K_W10, K_U17, K_K03
• Strategies to recover and purify product. The permeate technique microfiltration, dialysis, electrodialysis. Mathematical models of the biotechnology. Chromatographic and adsorptive technique of species s and continuous chromatography (SMB). Expanded bed adsorption of exchange and gel chromatography. Theory of chromatographic separa influence of process parameters: temperature, composition of mobile separation. The optimization of periodical and continuous process. Print and electrochromatography. Drying methods, crystallization methods.	s of the mixtures separation: ultrafiltration, osmosis, reverse osmosis, processes. The examples of applications for species separation in eparation. Thin layer chromatography, column periodical chromatography thromatography. The normal and reversed phase chromatography. Ion ation: basic mathematical models of adsorption and mass transfer. The phase, solid phase, pH, ion strength of mobile phase on the mixtures ciples of selections of chromatographic systems. Capillary electrophoresis
Scientific and technological information	K_W03, K_U01
 Searching for information on the most abstracts and bibliographic in Search for chemical information in scientific journals available on-line fro 	nportant publishing houses (Chemical Abstracts) with the use of index. m the Rzeszów University of Technology library.
Social competences	K_W15, K_U06, K_K04
 Social and interpersonal competences as an ability to achieve social partners Components of social competences Competencies determ Strategies for image formation and self-presentation Conditions of in skills and abilities relevant to social competences (assertive, cooperative abilities relevant to social competences (mutual understanding and ge influencing, solving problems and conflicts) Developing and improving assertive skills, skills to strengthen, sustain others, self-expression s competences verbal and non-verbal communication Improvement conditions) 	al and individual goals while maintaining good relations with interaction nining the effectiveness of behavior in the situation of social exposure • terpersonal skills and the importance of social competences • Improving e, social, and social resourcefulness) • Developing and improving skills and titing to know each other, creating a climate of mutual trust, helping and skills and abilities essential for social competences (communication skills, skills) • Developing and improving skills and abilities relevant to social t of the skills of beneficial self-presentation (especially in professional
Statistics and results elaboration	K_W01, K_W03, K_W14, K_U10, K_K01

• LIMS (Laboratory Information Management System) – selected problems. • Experimental database. Rejection outliers in data. Selective use of data • Exploratory data analysis of the analytical measurements, descriptive statistics, cross-sectional data, normality tests, statistical graphs. The frequency distribution of a variable. • Statistical hypothesis testing. Parametric and non-parametric tests. • Multiple regression. Study of correlation between variables. • One-way and multiple analysis of variance. Discriminant analysis, factor analysis and principal components analysis. • Fitting the observed variable distribution to a theoretical distribution. • Management of Statistica program data. Parameters of variable distribution • Study of correlation • Study of empirical variable distribution. Statistical inference- nonparametric tests. • Statistical inference- parametric tests. • Analysis of the relationship between variables: linear and non-linear regression. • Analysis of Variance.

Technical safety and ergonomics

K_W13, K_W14, K_U12, K_K01, K_K02, K_K04

• Legislation in the field of labour protection, including the following: the rights and responsibilities of students and staff in the field of safety and liability for violation of safety rules and regulations, liability for accidents, the legislation concerning insurance benefits for safety violation and accidents at work. • Responsibilities of the university in the provision of safe and healthy learning environment: health and safety requirements for school buildings, the requirements for systems and equipment located in the building of the university. • Subject matter and scope of work safety and ergonomics. • Security in terms of the system (security as a management objective, as a legal obligation, a moral norm). • Models of accidents at work (the classic models of accidents, near misses models, modelling human behaviour in emergency situations). • Statistical and behavioural theories of safety. • Ergonomic aspects of the system human – machine – environment. • Assessment of the reliability of the systems: human – computer, driver – car, pilot – airplane, as real cases of human – machine systems. • Methods for measuring the burden of dynamic physical labour and static physical labour. • The study of the burden of mental work. • Dangerous and harmful factors connected with work process and working conditions. • Risk assessment in a selected work position. • Ergonomics in the shaping of working conditions (some ergonomic principles and recommendations for the design of the spatial structure of the workplace, indication and control devices, technological processes, objects). • University rules of conduct in case of accidents and emergencies (fire, accident, etc.) pre-medical aid rules in the event of an accident, fire protection (including evacuation).

Toxicology

K_W14, K_U03, K_U19, K_K02, K_K05

Introduction on the toxicology, definition of poison, intoxication, intoxication types, toxicity of chemical compounds, accumulation, persistence, way of introduction of poisons in the organisms. • Factors which influence of toxicity of poisons, synergisms and antagonisms. • Biotransformation of poisons in the organisms and degradation process of the poisons in the environment, elimination of poisons from organisms (pathway and biochemical mechanisms of elimination), etiology of intoxication, definition of abbreviation which will be used in the toxicology. • Prevention of the intoxication and basic therapy of intoxication REACH process – legislative in the European Union. • Risk assessment, definition of RAA, identification of harmful substance, dose – response, exposition, risk characteristic, calculation of ADI (or RfD) and LD50, definition of abbreviation NOEL, NOAEL, NOEC, NOAEC, SF, UF, MF, ADI, TI • Practical presentation of risk assessment of use of herbicide in the aquatic environment. • IDevelopmental toxicology, toxicology versus spermatogenesis, oogenesis and fertilization. Evaluation of toxic compounds on the embryo and developmental organism after birth to adulthood. • Toxicology of choice inorganic compounds (CO, CN-, NO2-, NH3, H2S, Cl2, PH3 ...). Toxicology of pesticides – divide of pesticides according to use in the agricultural practice, toxicology of selected pesticides according to chemical groups • Intoxications of selected drugs • Mycotoxins - characterization, toxicity, risk, divide by effect on the bodily organis) • Poisonous animals – chemical compounds of animal toxins, representative animal species. • General information about toxicology, diagnose of intoxication, sampling, packing and sending for chemical compounds separable by water steam distillation • Determination of warfarine (kumarine) in the biological material · Determination of alkaloids in biological material by TLC method • Determination of drugs in the biological material by TLC method • Determination
</

programme content of elective modules

K_U02, K_U06, K_U07 English (A) • Talking about yourself, famiy, home, likes and dislikes. Question forms. • Talking about important dates and events. Writing formal and informal emails. • Discussing differences between men and women. Expressing opinions. • Describing people. Revision of verb tenses: present and past simple, present and past continuous. • Talking about yourself. Conversation and interviews. • Giving advice on successful interviews. Talking about yourself. • Talking about films. Expressing opinion about films. • Talking about life experiences. Verb tenses: present perfect and past simple. Talking about the media and news. Expressing opinion conspiracy theories. Matching headlines with explanations. • Talking about stories from the past. Writing a news report. • Talking about lying. Collocations with 'say' and 'tell'. • Tellling a story or anecdote from the past. Listening to people telling anecdotes. • Phrases to describe a good/bad experience. Talking about memorable moments. Writing about one of your happiest memories. • Expressing opinions. Talking about problems of teenagers and their parents. • The future (plans): the present continuous, going to, will, might. Writing messages; learn to use note form. • The future (predictions): will, might, may, could, going to, likely to. Future time markers; idioms Listening to predictions about the future of communication. Talking about how things will change in the future. • Reading a short story about a misunderstanding. Dealing with misunderstandings. Types of misunderstandings; phrases to clarify/ask someone to reformulate • Listening to telephone conversations involving misunderstandings. Learning to reformulate and retell a story about a misunderstanding. Role-playing resolving a misunderstanding. • Reading an article about millionaires. Modals of obligation: must, have to, should. • Discussing the qualities needed for different jobs. Completing a survey and discussing the results. • Reading about childhood dreams. Reading job advertisements. Used to and would. • Listening to two people describing dream jobs gone wrong. Talking about past habits. Writing a covering letter. • Reaching agreement Business collocations. Phrases to give opinions, • Listening to people making decisions in a meeting. Learning to manage a discussion Participating in a meeting and creating a business plan. • Office conversation; phrases to describe routines. Describing a day in your life. Reading an article about how technology changed the world. Comparatives and superlatives. Vocabulary: technology. • Discussing how technology has changed the world. Talking about different types of transport and their uses. Writing an advantages versus disadvantages essay. Talking about future hopes and plans. Grammar: Future Perfect, Future Continuous. • Listening to people answering difficult general knowledge questions. Doing a short general knowledge questionnaire; answering questions on your area of expertise. • Polite requests. Problems and solutions. • Listening to conversations about technical problems. Learning to respond to requests. Role-playing asking and responding to requests. • Reading about basic emotions. Zero and first conditionals. -ing versus -ed adjectives; multi-word verbs with on, off, up and down • Listening to a radio programme about therapies. Talking about your emotions. Discussing what advice to give people in a variety of situations. • Second conditional. Verb-noun collocations • Discussing what you would do in different hypothetical situations. Writing a letter of advice. • Giving good and bad news. Life events. • Listening to conversations where people receive news. Learning to introduce and respond to news. Role-playing giving someone news • Phrases to describe a good/bad experience. Talk about memorable moments. Writing about one of your happiest memories. Reading a short introduction to The Secret of Success. Present perfect simple versus continuous. • Present and past modals of ability. Reading a biographical text about the memory men. • Listening to a three-way conversation about memory. Talking about your abilities. Writing a summary. Clarifying opinions. Reading a story about qualifications. • Listening to a discussion about intelligence. Learning to refer to what you said earlier. Choosing the right candidate for the job. Giving opinions and examples. • Reading a BBC blog about neighbours. Articles. Quantifiers • Describing your neighbourhood and discussing how it could be improved. • Relative clauses. Vocabulary connected with the internet. Reading a website review. • Listening to descriptions of online communities. Comparing real-world and online activities. Writing a website review. • Being a good guest. • Listening to people describing guest/host experiences. Learning to accept apologies. Discussing problematic social situations. • Revision for the written examination. • Speaking practice - preparation for the oral examination. K U02, K U06, K U07 English (B)

• Flatmating, family, personality vocabulary, asking questions. Speaking, listening. • Vocabulary used in informal emails. Writing an informal email, checking accuracy • Feelings, gradable and ungradable adjectives, word formation. Reading, speaking, listening. Grammar: Present Perfect • Advertisements. Making polite phone enquires. Reading, listening, speaking. • Writing a summary of a first encounter story • Social issues. Verbs and nouns with the same form. Grammar: Present Perfect • Preventing crime, surveillance. Giving solutions. Grammar: the Passive • Formal written language. Writing a letter of complaint. • Newspaper extracts. Expressing opinions. Opinion adjectives. Reading and speaking. • Discussing ingredients of happiness; carrying out a happiness survey. Writing tips for being happy for a website. • Games. Discussing behaviuor and annoying

habits and routines. Grammar: would/used to.Speaking. • Talking about leisure. Writing an opinion essey. Using linkers. • Talking about holidays. Grammar: Future forms, countable and uncountable nouns. • Describing procedures. Common actions in procedures. Talking about gameshows. Verbs. • talking about unusual experience. Recommending. Writing a story. • Reading a story. Sayings. Grammar: Past tenses. • Telling stories Talking about experience from the past. Grammar: adverbs. • Wishes and regrets. Multi-word verbs. Grammar: wish/if only • Talking about reading habits, favourite books, likes and dislikes. Reading a summary. • Describing a favourite scene in a film. Writing a description of a favourite scene. Rading and talking about the worst inventions. Bicycles. Change. Compound nouns. Grammar: articles. • Discussing advertising tactics and the influence of advertising. Grammar: condictionals. • Marketing and advertising. Writing a report. Learning to make written comparisons. Brainstorming ideas. Adjectives. Suggesting ideas. Showing reservation. • Presenting a new business idea. Writing: a product leaflet. • Talking about different ages. Word formation - nouns. Grammar: Modal verbs. • Talking about future hopes and plans. Grammar: Future Perfect, Future Continuous. • Writing a letter to your future self. Using linkers of purpose. • Collocations. Convincing. Asking for clarification. • Collocations. Living longer. Taking part in aclass debate. Writing: a forum comment. • Television. different kinds of TV programmes. Interesting facts about TV. Multiword verbs. Quantifiers. • Retelling real and made-up stories. Reading a questionaire. Grammar: reported speech. • Writing a discursive essay. Reading a newspaper article. Broadships and tabloids. Predicting. • Mistakes in press and TV. Re-telling a news story. Writing: a news article. Reading news stories about behaviour in tough situations. Collocations. Difficult decisions. Grammar: conditionals. • Feelings. A quiz on whether you're a morning or an evening person. Different attitude to time. Grammar: -ing form and infinitives. • Idioms connected to time. Writing an informal article. • Adjectives of manner. Talking about how to handle awkward situations. • Describing a family or cultural ritual. Writing about a family ritual. • Watching an extract from a programme about body language. • Discussing how good witness you are. Crime and criminals. Grammar: ing form and infinitives with different meanings. • Synonyms. Verbs with prepositions. Crimes. Grammar: modal verbs. • Reading an advice leaflet bout how to avoid trouble on holiday. Avoiding repetition. Writing a story about a lucky escape. • Reporting a crime. Solving problems. Rephrasing. • People in unusual situations. Survival items. Describing a dangerous adventure. • Professional language: mathematical symbols and terminology. Basic mathematical operations. • Professional language: Fractions, powers, logarithms. • Revision for the written examination. • Revision for the written examination. • Speaking practice - preparation for the oral examination. • Speaking practice - preparation for the oral examination.

French (A)

K_U02, K_U06, K_U07

• Interrogative pronouns (simple and complex inversion). • Trip around Paris; short advertisements - writing. • Describing events with the use of le passé composé tense. • Vocabulary related to describing the past. • Similarities and differences between Polish and French educational systems. Interpreting figures. • Presenting the university and the field of study. • Describing your last holidays - the use of l'imparfait and le passé composé tenses. • Direct object pronouns in various tenses and moods. • Indirect object pronouns in various tenses and moods. • Living in the city and in the country - advantages and disadvantages; comparatives and superlatives. • Real estate ads analysis; le conditionnel présent mood. Possessive pronouns. • Hypothesizing and giving opinions; impersonal verb forms. • Describing things; the place of an adjective in a sentence. Relative pronouns. • Vocabulary related to shopping; negotiating the price. • House chores; sharing duties with the family members. • Favourite dish - preparing a questionnaire; written comments on its results. • Outfits for various occassions; family celebrations. • "Dont" relative pronoun. • Giving personal opinion. • Means of transport - comparison. • A biography of a famous person; le plus-que -parfait tense. • The role of fashion in people's lives - presenting opinions. • Direct and indirect object pronouns COD/COI in the past tense. • The use of past participle with the subject and direct object. • Reported speech - positive sentences. • Car accident - expressing reasons. • Relationships within neighbourhood - describing people. • Hypotheses about text characters. • Sharing a flat - expressing personal opinions. • The "gérondif" mood as a way to express simultaneity, manner, reason. • Entertainment ans free time activities. • Reported questions. • Complex relative pronouns. • Presenting the selected French region. • Active and passive voice. • A film review. • Newspaper article - the use of the passive voice. • Job advertisement, CV, cover letter - documents analysis. • Vocabulary and expressions used in administrative correspondence - writing a cover letter. • A job interview. Students' work, socializing and building a network of contacts. • The "subjonctif" mood - introduction. • Describing work experience. • Internet as the most popular medium. • Future tenses: le futur proche/ le futur simple; conditional "si+présent+futur simple". • Plans for the future. • Conditional « si+ imparfait+conditionnel présent ». • Expressing wishes. • Adverbs - the place in the sentence. • Private letter and reply to a private letter.

French (B)

K_U02, K_U06, K_U07

• Describing and reporting events in the past tense. • Paris - the center of fashion. • Pronouns COD/COI in various tenses. • Modern and dying professions. • A famous fashion designer - presentation. • Demonstrative and possessive substatival pronouns. • Simple and complex relative pronouns. • Jeans - a universal timeless outfit. • Complaints and solving problems, giving advice. • Expressing reason and result. • The "subjonctif mood - expressing purpose. • Traffic regulations - obligations and prohibitions. • Reported questions. • Choosing profession, justyfiyng. Expressing the reason. • Living in homeland and abroad, giving arguments. • National symbols of Poland and France. • "Le passé simple - literary tense". • Comparisons - various living styles, the comparative of irregular adjectives. • Real estate market in France and in Poland. • Expressing acquiescence. • Emigration and mobility, expressing opinions. • "Le savoir-vivre" - good manners. • What is proper and improper - similarities and differences concerning Polish and French customs. • Negatives - summary. • Expressing prohibition. • Expressing hypothesis. • Passive voice in a newspaper article. • Climate changes - vocabulary related to ecology. • People's eco-friendly habits. • Plans for the future - time expressions. Pensioners nowadays and in the past; changes in perceiving elderly people. • Setting up a company - development plans. • Inventions which revolutionized people's lives. • Expressing hypothesis and condition. • Eco-firendly solutions for the city, region and country. • Ideal friend; superlatives. • Modern idols. • Presenting the favourite character. • Passions in our lives. • Tense concordance in a short story. • Globalisation, positive and negative consequences. • Verb patterns with an infinitive. • Expressing disagreement towards proposals. • The art of giving arguments in a presentation. • A mobile phone: hell or paradise? • Where does Europe end? - information about the European Union. • Verbs useful for giving arguments. • Arguments cohesion - coherence linkers. • Sentence transformations - expressing coherence. • Higher education facts and expectations. • Presenting a selected company.

Fundamentals of economics

K_W15, K_W16, K_W18, K_U11, K_U14, K_K06

· Introduction to Economics (outline of economic thought, the basic concepts, principles and assumptions of microeconomic analysis, the place of economics in the system of social sciences and relationships with other disciplines). Introduction to microeconomics. • The model of the market economy (institutions, productivity, efficiency, actors, resources and streams in the economic system, market - classifications and functioning). Demand (law of demand, exceptions, determinants, elasticity of demand), supply (the law of supply, exceptions, determinants, elasticity of demand), the balance of the market in the short, medium and long term, the impact of regulated prices on the market, model cobwebs. Consumer choice (the functioning of households, usability, first and second Gossen law, pension consumer Marshall, the balance of the consumer). • The rules of the enterprise (introduction to the theory of enterprise, basic definitions, classifications and processes). • The short run and long run production function in the market, economies of scale, choice of optimal technology. • The instruments of cost management in the enterprise, cost function in the long and short term, costs and liquidity. • Perfect competition and monopolistic competition. • Various degrees of competitiveness in the marketplace: monopolies, oligopolies • Introduction to macroeconomics, the basic phenomena and macroeconomic problems. • The development of economic systems, economic growth - measuring and conditions of the product and national income and its determinants, economic conditions (cycles) and the role of investment in the economy, analysis of the situation in Europe and the world. • The importance of the public finance sector, the organization SFP (sub), the impact of fiscal policy on national income, the role of the state in the economy, the budget as a tool for influencing the economy, the issue of budget deficit and public debt, the impact of public support (including EU funds) for the development of entities the national economy, analysis of the situation in Europe. • The development of the monetary system, the role of money in the economy, money in the strict sense and broad sense, the demand for money, the money supply and the mechanisms of its creation, quantitative theory of money, monetary aggregates. • The banking system of the state, the role of the central bank and monetary policy tools of monetary policy, the interbank market and the activities of commercial banks. • The phenomenon of inflation and its effects on social and economic demand and supply-side causes of inflation, the measurement of inflation - inflation, analysis of the situation in Europe, anti-inflation policy. • The labor market, employment policy, the importance of competence and demographic processes, labor market flexibility, unemployment as a problem of economic and social development. • International economic relations, the foreign exchange market, balance of payments, the single market of the European Union and its importance for the development of Member States, including developing countries. The European Union in the global economy.

Fundamentals of management

K_W15, K_W16, K_W18, K_U11, K_U14, K_K06

• Management as an academic discipline • Company and its environment as an object of management • Management features • Conterporary management problems. • State security management, internal and external security, ecological safety, microbiological safety, management of state security structures.

K_U02, K_U06, K_U07

• New communication media. Establishing new contacts: Speed-dating. • Describing one's language skills - working with a video material. Declension of an adjective after definite, indefinite and no article. • Media competences, ability to creatively use internet assets in foreign language learning. Time adverbs. • Bisness meetings in a new environment, forms of greeting and introduction. • Strategies of learning language for special purposes. • Private and business meetings. Modal particles. • Planning and organizing official events. • Spoken and written invitations, establishing the date of the meeting. Rektion of the verb. Adverbial pronouns in questions and answers. • Working with a video material - 'Oktoberfest'. Planning and preparation of a presentation. • Business lunch. Quiz about etiquette. • Features of a good presentation. • Preparing product presentation. • Planning a holiday, travel bureau's offers. Assumptions - 'werden + wohl' verbs + infinitive. • Accommodation - hotel rating, opinions on internet sites. Relative sentences, relative pronouns. • Public transport in German speaking countries. • Future vehicles and travels. Future tense 'Futur I'. • Working with a video material - dream travels. • Organizing a conference, choosing a hotel, business mail. • Flat market, different forms of accommodation. Complex nouns. • Living community, student's house. Looking for a flat - advertisements. Time prepositions. • A student room, flat appliances, description of functions of furniture and items of every day use. • Switching flats during holiday. Word order. • Multi generation house. • Office and its equipment, positive rapport. • Living business community, pros and cons. • Presenting a profession - working with a video material. • Ideal work place. Conditionals. • Job advertisements, writing a cv. • Different ways of job searching. Advice and tips for job applicants. Sentences with 'damit' and 'um...zu'. • Job applications, talking about your education and work experience. • Small-talk, expressing opinion about one's job - pros and cons. • Famous composers, a biography note. Negative sentences. • Music genres, music instruments, music bands. • Festivals and concerts in German speaking countries. A schedule of musical events. • Planning a shared evening, inviting to a concert, writing a private email. • 'Rammstein' band - presenting a band. Providing argument support one's choice. Sentences with "denn", "weil", "nämlich", "deshalb". • German rock music - working with a video material. • Creating a presentation about German rock music. • Board games, tele shows. Rules of favourite games. Passive voice. • E-commerce, internet shops. • Psychology of selling, interpreting the behaviour of the customer. Passive voice with modal verbs. • Consumers' typical behaviour during shopping. Identification of different behaviour. • Online shopping discussion - pros and cons. • Vocabulary related to finances. • Acquisition of new skills, upgrading one's qualifications, various course offers and certificates Noun's genitive. • Advanced ways of information searching, remote ways of providing education, education platforms. • Facilities found in a moder language lab. Prepositions of place. • Education system in Germany - a discussion forum. • Technical occupations, handling and description of technical equipment, manuals. Prepositions with dative and accusative. • Malfunctions and technical faults. Imperative. • Complaints - exchaning emails.

German A

K_U02, K_U06, K_U07

· Friendship, meetings, people relationships, relations. Declension - type 'n'. · Describing a person, introductions, characteristics of types of behaviour, features of character. • Presenting one's characteristic. Noun formation. • Reder's magazine - class reunions and locating classmates by internet. Working with a text. • Occupation and work, workplace, presenting one's flaws and strengths. • Talking about the past. Past tense (Präteritum) of regular, irregular and mixed nouns. • Report concerning the internship done. Presenting opinions regarding an employee. Conditions and forms of work. Requirements and competences. • Working with a video material. Conducted activities and working conditions. Presenting one's plans and professional plans. • Living conditions, an interview with a real estate agent. Relative pronouns and relative clauses. Analysis of offers and notices, explaining abbrevations. Adverbials of time. • Living in Germany: informational text, statistics, graphs. • Customer service, phone conversations. Language reactions based on a given situation. • Oral and written complaint. Sentences with "obwohl" and "trotzdem" • Writing a formal letter with a set of fixed phrases. • Inviting to a company promotional meeting - working with a text. • Computerisation of everyday life. Functions of devices/appliances used nowadays and in the future. • Visions of technological progress of the future. Futur I tense. Using electronic devices in private and professional life - presentation. • Working with a video material - history and development of an enterprise features of products and their distribution. • Formal and informal invitation. Conditional conjunction "fails". • Business meeting. Rules of participating in a meal and different professional and social situations. • Holiday plans, expressing wishes and intentions. Verbs: 'sollen'. • Media, Germany's press market. • Characteristics of a given magazine - presentation. • Shopping, slecting products, reacting to suggestions and propositions. Sentences with 'zu' before an infinitive. • Conversation between a client and consultant. Typical expressions. • Conversations between a client and consultant. Using typical professional expressions. Setting up a company and customer acquistion. • Choosing a profession. Determining one's own skills and abilities. Causative clauses. • Social competences and career choice test. Employment profiles. Time clauses with 'bevor' and 'während' conjunctions. • Describing personality and aptitudes, expressing opinions and presenting test results. • Miniproject - professional predispositions, weak and strong sides of a candidate, talking with a careers adviser. • Working with a video material - history and development of Hueber publishing house, as well as its products. • Working conditions and concept of an employee-friendly enterprise. Gradation and declension of an adjective. • European Union - employment opportunities in EU countries, its history, as well as inner labour market and main institutions. • Smoking prohibitions in a work place - formulating arguments in favour and against, expressing opinions. Imperative. • Presentation structure, template, typical expressions. • Conditions determining good employment and company's attractiveness. • Wasted chances and opportunities. Unreal clauses in the past. • Reporting experienced failures - a radio audition. Conditional clauses - Konjunktiv II. • Helpline - describing a given situation. 'Ware / hätte' structures + Partizip II. • Describing controversial events - discussion and commentary. • Expressing disappointment and reacting to it - writing an e-mail, working with a text published on a blog. • Everyday situations that make you happy. Plusquamperfekt tense. • Expressing emotions - language means. • Summarizing the previous year and positive events. Time clauses with 'nachdem'. • Working with a video material - 'Our piece of happiness'. Family history. Important life areas, experiencing success and satisfaction. • Parties, celebrations, events happening in a workplace. • Beginnings of a career. Speed-dating. Employers' expectations. • Comparison of holidays and events. Written invitations for different occassions. • Writing an e-mail and letters - components. Writing invitations.

Russian (A)

K_U02, K_U06, K_U07

• Healthy diet. • Wedding customs in Poland and Russia. • Family holidays. Sentences with a, и, но, или. • Leisure time. Writing a short play/movie review. • Mass media. Expressing opinion about mass media and their role. • Internet or newspapers. Demonstrative pronouns этот, эта, это, эти, тот, та, то, те. Using пользоваться (чем?) verb. • Disabled are among us. Vocabulary and constructios connected with the topic of disabled. Popular occupations. Male and female noun forms of different occupations. Negative proniuns никто, ничто, некто, нечто, никогда, некогда никуда, некуда. • Professional duties. Vocabulary related to activities coonducted in popular jobs. • Job interview. Giving advice concerning job selection and preparation for job interview. • Moscow labour market. Describing pros and cons of certain occupations. Writing a job application. Working abroad - pros and cons. • Material revision. Talking about the plans after graduation. • Studying in Poland. Names of different universities; popular abbrevations. Vocabulary related to formalities and conditions that have to be met to study. • Studying in Russia. Abbrevations of universities and faculties, Supporting the choice of studies. Writing an email and private letter. • Student life. стать/быть/ работать (кем?) construction, быть по профессии/по образованию (кем?) construction and несмотря на то,что construction. • Excursions. Describing/planning and narrating excursions. Writing questions regarding holiday offers. • Summer camps. Tourist equipment. Travelling by train. путь noun. • Tourist office. Writing excursion advertising leaflets. Writing a letter of complaint. • Tourism in Poland. Accommodation base - vocabulary. Describing excusrions and sight-seeing. • Tiurism in Russia. Full meaning of турбюро, турбаза, ж/д abbrevations. заказать, забронировать verbs. • Renting a flat for summer. Vocabulary and constructions used in flat-renting advertisements. снимать, снять, сдать в аренду verbs. • Real estate agency Describing appearance of rooms and their facilities based on illustrations. • House or flat? Where to live? Subjectless sentences. • Material review Names of tourist equipment. vocabulary and constructions used when describing a flat. • Writing e-mails. Writing a private letter concerning an unfortunate journey. Vocabulary related to private letters. • Our neighbours. Participles: usage and creation. • Our planet Earth. Describing and proposing different ecological actions. Presenting data concerning biodegredation of different common-use products. • Protect nature. Conducting a survey related to pro-ecological behaviour. Writing an essay about environmental danges. • Natural disasters. Describing climate and weather. Vocabulary - natural disasters. • Ecological crisis. Describing climate and weather. Vocabulary - natural disasters. • Cataclisms. Describing activities related to acting in case of cataclisms. Superlative forms. • World of technologies. Talking about scientific inventions and technical novelties. Technical language. • 21st century inventions. Describing information technologies. Describing malfunctions. Vocabulary related to computer and internet. • Technology and us. Naming and describing inventions. Expressing opinions. • We are all equal. Creating utterances about the social roles of men and women. Expressing opinions about partnership. Vocabulary and constructions related to equality and social roles of men and women. • Generation gap. Expressing opinions about generation gap and discussion about the validity of some bans. • Juvenile subcultures. запрещать, запретить verbs. каждый, всякий, любой relative pronouns. • Important dates in our life. Describing dates and events. Complex quantifiers. • Products and services. Reading comprehension. Dialogues concerning malfunctions and repairs of every day objects. Advertisement's effect on a human. Describing activites related to advertisements. Naming and describing services. • E-commerce. Talking about e-commerce. Accusative of plural living and non-living nouns. • War. Expressing opinions about war service and women participation: discussion. Vocabulary related to war service, conflicts and inner and international problems. • Citizen debt. Reading comprehension. Imperatives: Будь я

президентом, не было бы такого!. • Social problems. Naming and describing selected social problems and proposing their solutions. Vocabulary related to selected social problems. • Human and society. Conducting a debate abour homelesness and means of fighting it. Time constructions with prepositions: a and vepes. • Master and Margaret. Discussing the text. Knowledge about Russia: life and work of Michael Bulhakow. • Slavian mythology. Read comprehension. • Russian painting. Reading comprehension: text about Russia painters. • Russian Federation. Vocabulary related to both the structure, as well as political ststem of Russian Federation. • Russia today. Reading comprehension concerning structure and political system of Poland. .

Russian (B)

K_U02, K_U06, K_U07

· Appearance. • Features of character. • Asking for personal details. Processing and transferring information. • Ethical problems. Personal prononus with or without preposition. • Home products. Present tense. • Real estate, Nouns. • House renovations. Adjectives. • School requirements. Verbs: учить, учиться, изучать. • Systems of educations in Poland and Russia. • School requirements. Prepositions в, на. • Occupations. Verbs related to different occupations. • Professional work. Temporary work. Labour market. Present tense. • Our portfolio. Writing a letter of motivation. Writing a CV. Nouns. • Family holidays. Naming holidays. Possesive pronouns. • Family members. Leisure time and reflexive verbs. • People and relationships. Adverbs of place and direction. • Food and its names. • Restaurants. Numerals 1,2,3,4 in junction with nouns and adjectives. • Describing diets. Expressing opinions. Demonstrative pronouns. Imperative. • Services: buying and saling. Verbs: купить/покупать. • Bank (types of payment). Main numerals. Nouns: рубль. • Products. Advertisements. Adverbs of level and measurement. • Means of transport in Russia. Interesting places in Russia. • Travelling vocabulary. Naming and describing аccommodation. Nouns ending -ия, -ue. • Describing excursions and sight-seeing. Expressing opinions. Writing a blog. • Art genres (movies). Cinema genres. • Mass media. Present tenses. • Sport disciplines. Sport venues. • Sport equipment. Comparatives. • Sport competitions. Nouns with adjectives. • Describing one's well-being. Ilnesses and means of curing them. • Curing and healing processes. Prepositions in constructions related to time and direction. Addiction. Imperative. • Naming basic technical devices. Activities made with basic technical devices. • Computer and internet. Vocabulary. Wildlife. Naming plants and animals. Describing landscape. • Catastrophies and natural disasters. Adjectives. • Catastrophies and natural disasters. Adjectives. • Ecology. Describing activities related to protecting natural environment. • Russia. Country's structures and offices. • Social and international organizations. Present tense. • Economics. Inner and international conflicts. • Social life. себя pronoun. друг друга expression. Social problems. Vocabulary related to current social issues. • Master and Margaret. Reading comprehension. Life and work of Michael Bulhakow. Mythology. Selected information concerning Slavian mythology.
 Wasilij Kandinskij. Reading comprehension.
 Iwan Szukszyn. Reading comprehension.
 Iwan Szukszyn. Reading and describing holidays.
 Polish holidays. Naming and describing holidays.
 Polish holidays. Naming and describing holidays.
 Polish holidays.
 Naming and describing holidays.
 Polish holidays.
 Naming and
 Polish holidays.
 describing holidays.

3.2. Purification and analysis of biotechnological products, full time

3.2.1. Parameters of the study plan

The total number of ECTS credits that a student must obtain in the course of classes conducted with direct participation of academic teachers or other persons conducting classes.	123 ECTS
The total number of ECTS credits allocated to classes related to scientific activity conducted at the university in a given discipline or disciplines to which the course of study is assigned.	126 ECTS
The total number of ECTS credits required to be obtained by a student in the humanities or social sciences for the courses of study assigned to disciplines within the fields of study other than the humanities or social sciences respectively.	5 ECTS
The total number of ECTS credits allocated to elective courses	
The total number of ECTS credits allocated to elective courses.	03 ECTS
Total number of ECTS credits allocated to work placements, internships (if the study program includes work placements or internships).	4 ECTS
Total number of ECTS credits allocated to elective courses. Total number of ECTS credits allocated to work placements, internships (if the study program includes work placements or internships). Hours of apprenticeships, internships (if the study program provides for internships or apprenticeships).	4 ECTS 160 h.
Total number of ECTS credits allocated to elective courses. Total number of ECTS credits allocated to work placements, internships (if the study program includes work placements or internships). Hours of apprenticeships, internships (if the study program provides for internships or apprenticeships). The total number of ECTS points that a student must obtain as part of a foreign language course.	4 ECTS 160 h. 9 ECTS

Detailed information about:

- 1. the relationship between learning outcomes and modular learning outcomes;
- 2. key learning outcomes in terms of knowledge, skills and social competences, demonstrating their relation to the discipline / disciplines to which the course is assigned;
- 3. the development of learning outcomes at the level of classes or group of classes, in particular related to the scientific activity conducted at the university;
- 4. learning outcomes in terms of knowledge, skills and social competences leading to the acquisition of engineering competences, in the case of study programmes on completion of which the student is awarded a professional title of engineer / Master of Engineering;

can be found in the Module Activity Sheets, available at the following URL: http://krk.prz.edu.pl/plany.pl?Ing=EN&W=C&K=H&TK=html&S=1490&C=2020, which are an integral part of the study programme.

3.2.2. Plan of study

Semester	Org.Unit	name of the subject	Lecture	Class	Laboratory	Project/ Seminar	Sum of hours	ECTS	Exam	Mand.
1	ZB	Technical safety and ergonomics	15	0	0	0	15	1	Ν	
1	СВ	Cell biology	15	0	0	0	15	2	Ν	
1	CN	General and inorganic chemistry	30	30	0	0	60	6	Т	
1	ZM	Academic savoir - vivre	10	0	0	0	10	1	Ν	
1	FF	Physics	30	30	0	0	60	6	Т	
1	CB	Genetics	30	15	0	0	45	4	Ν	
1	ZM	Social competences	10	15	0	0	25	2	Ν	
1	FM	Mathematics	30	30	0	0	60	6	Т	
1	ZE	Economic course	30	0	0	0	30	2	Ν	
Sums for t	he semest	er: 1	200	120	0	0	320	30	3	4
2	СВ	Cell biology	15	0	30	0	45	4	Т	

2	CN	General and inorganic chemistry	30	15	45	0	90	7	т	
2	FF	Physics	15	15	15	0	45	4	т	
2	CI	Engineering graphics	15	0	30	0	45	4	N	_
2	FM	Mathematics	30	30	0	0	60	6	т	
2	CI	Packeges of application software	0	0	30	0	30	2	N	
2	CB	Computer science	15	0	30	0	45	3	N	
Sums for t	he semes	ter: 2	120	60	180	0	360	30	4	4
3	CI	Chemical and biotechnological equipment	30	15	15	0	60	4	Ν	
3	CN	Biochemistry	15	0	30	0	45	3	т	
3	CD	Biophysics	15	0	0	0	15	1	N	
3	СВ	Bioinformatics	15	0	15	0	30	2	Ν	
3	CN	Analytical chemistry	15	0	30	0	45	3	Ν	
3	CF	Physical chemistry	30	15	0	0	45	4	т	
3	CD	Organic chemistry	30	15	0	0	45	4	Т	
3	D,J	Foreign language	0	30	0	0	30	2	N	
3	CB	General microbiology	30	0	30	0	60	- 5	т	
3	CB	Statistics and results elaboration	15	0	15	0	30	2	N	
3	DL	Physical education	0	30	0	0	30	0	Ν	
Sums for t	he semes	ter: 3	195	105	135	0	435	30	4	4
4	CN	Biochemistry	30	0	30	0	60	5	т	
4	CE	Physical chemistry	30	15	30	0	75	6	т	
	CD		30	15	30	0	75	6	т	
4	CB	Scientific and technological information	0	0	2	0	2	0	N	
4		Foreign language	0	30	0	0	30	2	N	
4	CB		15	0	15	0	30	2	N	-
4	CN	Industrial microbiology	30	0	30	0	60	5	Т	
4	CM	Biomaterials processing	30	0	30	0	60	4	N	
				-						
4	DL	Physical education	0	30	0	0	30	0	Ν	
4 Sums for t	DL he semes	Physical education ter: 4	0 165	30 90	0 167	0	30 422	0 30	N 4	4
4 Sums for t	DL he semes	Physical education ter: 4	0 165	30 90	0 167	0 0	30 422	0 30	N 4	4
4 Sums for t	DL he semes	Physical education ter: 4 Instrumental analysis	0 165 30	30 90	0 167 45	0 0 0	30 422 75	0 30 5	N 4 N	4
4 Sums for t 5 5	DL he semes CF CN	Physical education ter: 4 Instrumental analysis Biocatalysis	0 165 30 15	30 90 0 0	0 167 45 15	0 0 0	30 422 75 30	0 30 5 2	N 4 N N	4
4 Sums for t 5 5 5	DL he semes CF CN CB	Physical education ter: 4 Instrumental analysis Biocatalysis Molecular biology	0 165 30 15 30	30 90 0 0	0 167 45 15 30	0 0 0 0 0	30 422 75 30 60	0 30 5 2 5	N 4 N N T	4
4 Sums for t 5 5 5 5 5	DL he semes CF CN CB CN	Physical education ter: 4 Instrumental analysis Biocatalysis Molecular biology Environmental protection and biotechnology	0 165 30 15 30 30	30 90 0 0 0 0	0 167 45 15 30 15	0 0 0 0 0 0	30 422 75 30 60 45	0 30 5 2 5 4	N 4 N N T T	4
4 Sums for t 5 5 5 5 5 5	DL he semes CF CN CB CN CB CB	Physical education ter: 4 Instrumental analysis Biocatalysis Molecular biology Environmental protection and biotechnology Plant biotechnology	0 165 30 15 30 30 30 30	30 90 0 0 0 0 0	0 167 45 15 30 15 15	0 0 0 0 0 0 0	30 422 75 30 60 45 45	0 30 5 2 5 4 4	N 4 N N T T T T	4
4 Sums for t 5 5 5 5 5 5 5	DL he semes CF CN CB CN CB CN CB CI	Physical education ter: 4 Instrumental analysis Biocatalysis Molecular biology Environmental protection and biotechnology Plant biotechnology Bioprocess engineering	0 165 30 15 30 30 30 30 30	30 90 0 0 0 0 0 15	0 167 45 15 30 15 15 15 0	0 0 0 0 0 0 0 0 0	30 422 75 30 60 45 45 45	0 30 5 2 5 4 4 3	N 4 N T T T N	4
4 Sums for t 5 5 5 5 5 5 5 5 5 5	DL he semes CF CN CB CN CB CB CI DJ	Physical education ter: 4 Instrumental analysis Biocatalysis Molecular biology Environmental protection and biotechnology Plant biotechnology Bioprocess engineering Foreign language	0 165 30 15 30 30 30 30 0	30 90 0 0 0 0 0 15 30	0 167 45 15 30 15 15 0 0 0	0 0 0 0 0 0 0 0 0 0 0	30 422 75 30 60 45 45 45 30	0 30 5 2 5 4 4 3 2	N 4 N T T T N N	4
4 Sums for t 5 5 5 5 5 5 5 5 5 5 5	DL he semes CF CN CB CN CB CI DJ CB	Physical education ter: 4 Instrumental analysis Biocatalysis Molecular biology Environmental protection and biotechnology Plant biotechnology Bioprocess engineering Foreign language Computer-aided research	0 165 30 15 30 30 30 30 30 0 0	30 90 0 0 0 0 0 0 15 30 0	0 167 45 15 30 15 15 0 0 0 15	0 0 0 0 0 0 0 0 0 0 0 0	30 422 75 30 60 45 45 45 45 30 15	0 30 5 2 5 4 4 3 2 1	N 4 N T T T T N N N N N	4
4 Sums for t 5 5 5 5 5 5 5 5 5 5 5 5 5	DL he semes CF CN CB CN CB CI DJ CB CB CB CB CB	Physical education ter: 4 Instrumental analysis Biocatalysis Molecular biology Environmental protection and biotechnology Plant biotechnology Bioprocess engineering Foreign language Computer-aided research Immunological techniques in biotechnology	0 165 30 15 30 30 30 30 0 0 30 30	30 90 0 0 0 0 0 15 30 0 0	0 167 45 15 30 15 15 0 0 0 15 30 15 30 30	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 422 75 30 60 45 45 45 45 30 15 60	0 30 5 2 5 4 4 3 2 1 4	N 4 N T T T T N N N N N N N N N N N N N	4
4 Sums for t 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	DL he semes CF CN CB CN CB CI DJ CB CB CB he semes	Physical education ter: 4 Instrumental analysis Biocatalysis Molecular biology Environmental protection and biotechnology Plant biotechnology Bioprocess engineering Foreign language Computer-aided research Immunological techniques in biotechnology ter: 5	0 165 30 15 30 30 30 30 0 0 30 195	30 90 0 0 0 0 0 0 15 30 0 0 45	0 167 45 15 30 15 15 0 0 0 15 30 15 30 15 15 0 15 15 0 15 15 15 0 15 15 15 15 15 15 15 15 15 15	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 422 75 30 60 45 45 45 45 30 15 60 405	0 30 5 2 5 4 4 4 3 2 1 4 30	N 4 N N T T T N N N N N N N 3 3	4
4 Sums for t 5 5 5 5 5 5 5 5 5 5 5 Sums for t	DL he semes CF CN CB CN CB CI DJ CB CB CB he semes	Physical education ter: 4 Instrumental analysis Biocatalysis Molecular biology Environmental protection and biotechnology Plant biotechnology Bioprocess engineering Foreign language Computer-aided research Immunological techniques in biotechnology ter: 5	0 165 30 15 30 30 30 30 30 0 0 0 30 195	30 90 0 0 0 0 0 15 30 0 0 45	0 167 45 15 30 15 15 0 0 0 15 30 15 30 15 15 0 15 15 0 15 15 15 0 15 15 15 15 15 15 15 15 15 15	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 422 75 30 60 45 45 45 30 15 60 405	0 30 5 2 5 4 4 4 3 2 1 4 30	N 4 N T T T N N N N 3	4
4 Sums for t 5 5 5 5 5 5 5 5 5 5 5 5 5	DL he semes CF CN CB CN CB CI DJ CB CB CB he semes	Physical education ter: 4 Instrumental analysis Biocatalysis Molecular biology Environmental protection and biotechnology Plant biotechnology Bioprocess engineering Foreign language Computer-aided research Immunological techniques in biotechnology ter: 5 Molecular biology	0 165 30 15 30 30 30 30 0 0 30 195	30 90 0 0 0 0 0 15 30 0 0 45	0 167 45 15 30 15 15 0 0 15 30 165 15 30 165	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 422 75 30 60 45 45 45 45 30 15 60 405 30	0 30 5 2 5 4 4 3 2 1 4 30 2 2	N 4 N N T T T N N N N N N N N N N N N N N N N N N N	4
4 Sums for t 5 5 5 5 5 5 5 5 5 5 5 5 5	DL he semes CF CN CB CN CB CI DJ CB CB CB he semes	Physical education ter: 4 Instrumental analysis Biocatalysis Molecular biology Environmental protection and biotechnology Plant biotechnology Bioprocess engineering Foreign language Computer-aided research Immunological techniques in biotechnology ter: 5 Molecular biology Bioreactors	0 165 30 15 30 30 30 30 0 0 30 195 15 15	30 90 0 0 0 0 0 0 15 30 0 0 45 0 0 0	0 167 45 15 30 15 15 0 0 0 15 30 15 30 15 15 30 15 15 30 15 15 30 15 15 15 15 15 15 15 15 15 15	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 422 75 30 60 45 45 45 45 30 15 60 405 30 30 30	0 30 5 2 5 4 4 4 3 2 1 4 30 2 2 2	N 4 N N T T T N N N N N N N N N N N N N N N N N	4
4 Sums for t 5 5 5 5 5 5 5 5 5 5 5 5 5	DL he semes CF CN CB CB CI DJ CB CB CB CB CB CB CB CB CB CC CC CC CC	Physical education ter: 4 Instrumental analysis Biocatalysis Molecular biology Environmental protection and biotechnology Plant biotechnology Bioprocess engineering Foreign language Computer-aided research Immunological techniques in biotechnology ter: 5 Molecular biology Bioreactors Bioreactors I	0 165 30 15 30 30 30 30 30 0 0 0 30 195 15 15 15 15 15 15 15 15 15 1	30 90 0 0 0 0 0 0 15 30 0 0 0 45	0 167 45 15 30 15 15 0 0 0 15 30 15 15 30 15 15 30 15 15 30 15 15 30 15 15 30 15 15 15 15 15 15 15 15 15 15	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 422 75 30 60 45 45 45 45 30 15 60 405 30 30 30 30	0 30 5 2 5 4 4 4 3 2 1 4 30 2 2 2 1	N 4 N N T T T N N N N N N N N N N N N N N N N N N N	4
4 Sums for t 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	DL he semes CF CN CB CB CI DJ CB CB CB CB CB CB CB CB CB CB CB CB CB	Physical education ter: 4 Instrumental analysis Biocatalysis Molecular biology Environmental protection and biotechnology Plant biotechnology Bioprocess engineering Foreign language Computer-aided research Immunological techniques in biotechnology ter: 5 Molecular biology Bioreactors Bioreactors Bioreactors II Enzymology Disconsequencies	0 165 30 15 30 30 30 30 30 30 30 30 30 15 15 15 15 0 15 15 0 15 15 0 15 15 15 15 15 15 15 15 15 15	30 90 0 0 0 0 0 0 15 30 0 0 0 45 0 0 0 0 0 0	0 167 45 15 30 15 15 0 0 0 15 30 165 15 15 15 15 15 15 15 15 15 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 422 75 30 60 45 45 45 30 15 60 405 30 30 30 30 15 45	0 30 5 2 5 4 4 3 2 1 4 30 2 2 1 2 2 1 2 2 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	N 4 N T T T N N N N N N N N T T	4
4 Sums for t 5 5 5 5 5 5 5 5 5 5 5 5 5	DL he semes CF CN CB CN CB CI DJ CB CB CB he semes CB CB CI CZ CZ CZ	Physical education ter: 4 Instrumental analysis Biocatalysis Molecular biology Environmental protection and biotechnology Plant biotechnology Bioprocess engineering Foreign language Computer-aided research Immunological techniques in biotechnology ter: 5 Molecular biology Bioreactors Bioreactors Bioreactors II Enzymology Bioprocess engineering Ocentionering Computer-aided	0 165 30 15 30 30 30 30 30 0 0 30 195 15 15 0 15 15 0 15 15 0 15 15 0 15 15 15 15 15 15 15 15 15 15	30 90 0 0 0 0 0 0 15 30 0 0 0 45 0 0 0 0 0 0 15	0 167 45 15 30 15 15 0 0 0 15 30 165 15 15 15 15 15 15 15 15 15 20 20 15 20 20 15 20 20 20 20 20 20 20 20 20 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 422 75 30 60 45 45 45 45 30 15 60 405 30 30 30 30 15 45 45	0 30 5 2 5 4 4 3 2 1 4 30 2 2 1 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	N 4 N N T T T N N N N N N N N T T T T T T T T T T T T T	4
4 Sums for t 5 5 5 5 5 5 5 5 5 5 5 5 5	DL he semes CF CN CB CB CI DJ CB CB CB CB CB CB CB CB CI CX CB CI CX CB CI CX CB	Physical education ter: 4 Instrumental analysis Biocatalysis Molecular biology Environmental protection and biotechnology Plant biotechnology Bioprocess engineering Computer-aided research Immunological techniques in biotechnology ter: 5 Molecular biology Bioreactors Bioreactors Bioreactors II Enzymology Bioprocess engineering Genetic engineering	0 165 30 15 30 30 30 30 30 30 0 0 0 30 195 15 15 15 15 30 2 30 30 30 30 30 30 30 30 30 30	30 90 0 0 0 0 0 0 15 30 0 0 45 0 0 0 0 15 0 0 0 0 15 5 0	0 167 45 15 30 15 15 0 0 0 15 30 165 15 15 15 15 30 15 15 30 15 30 165 15 30 15 15 30 15 15 15 15 15 15 15 15 15 15	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 422 75 30 60 45 45 45 45 30 15 60 405 30 30 15 45 45 45 60	0 30 5 2 5 4 4 3 2 1 4 30 2 2 1 2 3 3 3 3	N 4 N N T T T N N N N N N N T T T T T T T T T T T T	4
4 Sums for t 5 5 5 5 5 5 5 5 5 5 5 5 5	DL he semes CF CN CB CB CB CB CB CB CB CB CB CB CB CB CB	Physical education ter: 4 Instrumental analysis Biocatalysis Molecular biology Environmental protection and biotechnology Plant biotechnology Bioprocess engineering Foreign language Computer-aided research Immunological techniques in biotechnology ter: 5 Molecular biology Bioreactors Bioreactors II Enzymology Bioprocess engineering Genetic engineering Foreign language Piceute techniques	0 165 30 15 30 30 30 30 30 30 30 30 30 30	30 90 0 0 0 0 0 0 15 30 0 0 0 45 0 0 0 0 0 15 0 0 0 0 15 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 167 45 15 30 15 15 0 0 0 15 30 165 15 15 15 30 15 30 15 15 30 15 15 30 15 15 30 15 15 30 15 15 30 15 15 30 15 15 30 15 15 30 0 15 15 30 15 15 30 0 15 15 30 0 15 15 30 0 15 15 30 0 15 15 30 0 15 15 30 0 15 15 30 0 15 15 30 0 15 15 30 0 15 15 30 15 15 30 0 15 15 30 15 15 30 15 15 30 15 15 30 15 15 30 15 15 30 15 15 30 165 15 15 30 15 15 15 15 30 165 15 15 15 15 15 15 15 15 15 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 422 75 30 60 45 45 45 45 30 15 60 405 30 30 30 15 45 45 60 30 75	0 30 5 2 5 4 4 3 2 1 4 30 2 2 1 2 3 3 3 3 3 3	N 4 N N T T T N N N N N N T T T T T T T T T T T T T T T	4
4 Sums for t 5 5 5 5 5 5 5 5 5 5 5 5 5	DL he semes CF CN CB CN CB CI DJ CB CI DJ CB CI CB DJ CB CI CB DJ CF CH	Physical education ter: 4 Instrumental analysis Biocatalysis Molecular biology Environmental protection and biotechnology Plant biotechnology Bioprocess engineering Foreign language Computer-aided research Immunological techniques in biotechnology ter: 5 Molecular biology Bioreactors Bioreactors Bioreactors II Enzymology Bioprocess engineering Genetic engineering Foreign language Biomolecular processes modeling Drue docime and surthesis	0 165 30 15 30 30 30 30 30 30 30 30 30 30	30 90 0 0 0 0 0 15 30 0 0 45 0 0 0 0 15 0 0 0 0 15 0 0 0 0 0 0 0 0	0 167 45 15 30 15 15 0 0 0 15 30 165 15 15 30 15 15 30 15 15 30 15 15 30 15 15 30 15 15 30 15 15 30 15 15 30 15 15 30 15 15 15 30 15 15 30 15 15 30 15 15 30 15 15 30 25 30 15 30 15 30 15 30 25 30 25 30 25 30 25 30 25 30 25 30 25 25 25 25 25 25 25 25 25 25	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 422 75 30 60 45 45 45 30 15 60 405 30 30 30 15 45 45 60 30 75 50	0 30 5 2 5 4 4 3 2 1 4 30 2 2 1 2 3 3 3 6 5	N 4 N N T T T N N N N N N T T T T T N N N N T T T T T N	4
4 Sums for t 5 5 5 5 5 5 5 5 5 5 5 5 5	CF CR CR CR CB CI CB CI CB CB CB CB CB CB CB CB CB CB CB CB CI CZ CB CI CZ CB CI CZ CB CI CZ CB CI CZ CB CB CB CB CB CB CB CB CB CB CB CB CB	Physical education ter: 4 Instrumental analysis Biocatalysis Molecular biology Environmental protection and biotechnology Plant biotechnology Bioprocess engineering Foreign language Computer-aided research Immunological techniques in biotechnology ter: 5 Molecular biology Bioreactors Bioreactors Bioreactors II Enzymology Bioprocess engineering Genetic engineering Foreign language Biomolecular processes modeling Drug design and synthesis Toxicology	0 165 30 15 30 30 30 30 30 30 0 0 30 195 15 15 15 15 15 30 0 30 30 30 30 30 30 30 30	30 90 0 0 0 0 0 0 0 15 30 0 0 0 45 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0	0 167 45 15 30 15 15 0 0 0 15 30 165 15 15 15 30 15 30 15 30 15 15 30 165 15 15 15 15 15 15 15 15 15 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 422 75 30 60 45 45 45 45 30 15 60 405 30 30 15 45 45 60 30 75 60 45	0 30 5 2 5 4 4 3 2 1 4 30 2 2 1 2 3 3 6 5 3	N 4 N T T T T N N N N N N N T T T T N N N N N N T T T T N N N N	4
4 Sums for t 5 5 5 5 5 5 5 5 5 5 5 5 5	DL he semes CF CN CB CN CB CN CB CN CB CI DJ CB CI CB CB CB CB CB CB CI CX CB CI CB CI CB CI CB CI CB CI CB CF CM CB CF CM CB	Physical education ter: 4 Instrumental analysis Biocatalysis Molecular biology Environmental protection and biotechnology Plant biotechnology Bioprocess engineering Foreign language Computer-aided research Immunological techniques in biotechnology ter: 5 Molecular biology Bioreactors Bioreactors II Enzymology Bioprocess engineering Genetic engineering Foreign language Biomolecular processes modeling Drug design and synthesis Toxicology ter: 6	0 165 30 15 30 30 30 30 30 30 0 0 195 15 15 15 15 15 15 30 0 30 30 180	30 90 0 0 0 0 0 0 15 30 0 0 0 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 167 45 15 30 15 15 0 0 15 30 165 15 30 15 30 15 30 15 30 15 30 15 15 30 15 15 15 15 15 15 15 15 15 15	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 422 75 30 60 45 45 45 45 45 30 15 60 405 30 30 15 45 45 60 30 75 60 45 45 45	0 30 5 2 5 4 4 3 2 1 4 30 2 2 1 2 3 3 6 5 3 30	N 4 N N T T T N N N N N T T T T N N N N T T T T T N N N N N N N N N N N N N N N N N N N N N N N	4
4 Sums for t 5 5 5 5 5 5 5 5 5 5 5 5 5	DL he semes CF CN CB CN CB CI DJ CB CI DJ CB CI CB CB CB CB CB CB CB CI CX CB CI CB CI CB CI CB CI CB CI CB DJ CF CM CB DJ CF CM CB he semes	Physical education ter: 4 Instrumental analysis Biocatalysis Molecular biology Environmental protection and biotechnology Plant biotechnology Bioprocess engineering Foreign language Computer-aided research Immunological techniques in biotechnology ter: 5 Molecular biology Bioreactors Bioreactors II Enzymology Bioprocess engineering Genetic engineering Foreign language Biomolecular processes modeling Drug design and synthesis Toxicology ter: 6	0 165 30 15 30 30 30 30 30 0 0 0 30 195 15 15 15 15 15 15 15 30 0 30 30 180	30 90 0 0 0 0 0 15 30 0 0 45 0 0 0 0 0 0 15 0 0 0 0 15 0 0 0 0 0 0	0 167 45 15 30 15 15 0 0 0 15 30 165 15 15 30 15 30 15 30 15 30 15 15 15 15 15 15 15 15 15 15	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 422 75 30 60 45 45 45 30 15 60 405 30 30 15 45 45 60 30 75 60 45 435	0 30 5 2 5 4 4 3 2 1 4 30 2 1 2 1 2 1 2 1 2 1 2 3 3 6 5 3 30 30 30 30 30 30 30 30 30	N 4 N T T T T N N N N N N T T T N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N A	4
4 Sums for t 5 5 5 5 5 5 5 5 5 5 5 5 5	DL he semes CF CN CB CN CB CI DJ CB CI DJ CB CI CB CB CB CB CB CB CI CB DJ CF CM CB DJ CF CM CB he semes	Physical education ter: 4 Instrumental analysis Biocatalysis Molecular biology Environmental protection and biotechnology Plant biotechnology Bioprocess engineering Foreign language Computer-aided research Immunological techniques in biotechnology ter: 5 Molecular biology Bioreactors Bioreactors Bioreactors II Enzymology Bioprocess engineering Genetic engineering Foreign language Biomolecular processes modeling Drug design and synthesis Toxicology ter: 6	0 165 30 15 30 30 30 30 30 0 0 30 195 15 15 15 15 30 0 15 15 30 30 180 15	30 90 0 0 0 0 0 0 0 15 30 0 0 0 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 167 45 15 30 15 15 0 0 0 15 30 165 15 15 30 15 30 15 30 15 30 15 15 30 15 15 15 30 15 15 15 0 0 0 15 15 15 0 0 0 15 15 15 15 0 0 0 15 15 15 15 15 0 0 0 15 15 15 15 15 0 0 0 15 15 15 15 15 15 15 15 15 15	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 422 75 30 60 45 45 45 30 15 60 405 30 30 30 30 75 60 30 75 60 45 435	0 30 5 2 5 4 4 3 2 1 4 30 2 2 1 2 3 3 6 5 3 30 2 2 2 1 2 3 3 3 6 5 3 30 2 2 5 5 4 4 5 5 5 5 6 5 6 6 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	N 4 N T T T N N N N N T T T N N N N N N N N N N N N N N N N	4
4 Sums for t 5 5 5 5 5 5 5 5 5 5 5 5 5	DL he semes CF CN CB CN CB CI DJ CB CB CB CB CB CB CB CB CB CB CB CB CB	Physical education ter: 4 Instrumental analysis Biocatalysis Molecular biology Environmental protection and biotechnology Plant biotechnology Bioprocess engineering Computer-aided research Immunological techniques in biotechnology ter: 5 Molecular biology Bioreactors Bioreactors Bioreactors II Enzymology Bioprocess engineering Genetic engineering Foreign language Biomolecular processes modeling Drug design and synthesis Toxicology ter: 6 Process safety Biosensors	0 165 30 15 30 30 30 30 30 30 30 30 195 15 15 30 0 15 15 30 0 15 15 30 15 15 30 15 15 15 30 15 15 15 15 15 15 15 15 15 15	30 90 0 0 0 0 0 0 15 30 0 0 0 45 0 0 0 0 15 0 0 0 0 0 15 0 0 0 0 0 0 15 0 0 0 0	0 167 45 15 30 15 15 0 0 15 30 165 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 15 30 15 15 15 15 15 15 15 15 15 15	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 422 75 30 60 45 45 45 30 15 60 405 30 30 15 45 45 45 60 30 75 60 30 75 60 45 435	0 30 5 2 5 4 4 3 2 1 4 30 2 2 1 2 3 3 6 5 3 30 2 2 2 2 2 2 3 3 3 6 5 3 30 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	N 4 N T T T T N	4
4 Sums for t 5 5 5 5 5 5 5 5 5 5 5 5 5	DL he semes CF CN CB CN CB CN CB CN CB CI DJ CB CI CB CB CB CB CB CB CI CX CB CI CF CM CB CI CF CI CF CI CF CI CF CI CF CI CF CI	Physical education ter: 4 Instrumental analysis Biocatalysis Molecular biology Environmental protection and biotechnology Plant biotechnology Bioprocess engineering Foreign language Computer-aided research Immunological techniques in biotechnology ter: 5 Molecular biology Bioreactors Bioreactors Bioreactors II Enzymology Bioprocess engineering Genetic engineering Foreign language Biomolecular processes modeling Drug design and synthesis Toxicology ter: 6 Process safety Biosensors Chosen subject OA	0 165 30 15 30 30 30 30 30 30 30 0 0 30 195 15 15 15 15 30 0 30 15 15 15 30 30 15 15 15 15 15 30 15 15 15 15 15 15 15 15 15 15	30 90 0 0 0 0 0 15 30 0 0 0 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 167 45 15 30 15 15 0 0 0 15 30 165 15 30 15 30 15 30 15 30 15 30 0 15 30 15 30 15 30 0 15 30 0 15 30 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 0 15 30 15 30 15 30 15 30 15 15 30 15 30 15 15 30 15 15 30 15 15 30 15 15 30 15 15 30 15 15 30 15 15 30 0 15 15 30 0 15 15 15 30 0 15 15 30 0 15 15 15 30 0 15 15 15 15 15 15 15 15 15 15	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 422 75 30 60 45 45 45 30 15 60 405 30 30 15 45 45 45 60 30 75 60 30 75 60 45 45 45 30 30 75 60 15 45 45 5 45 45 5 45 45 5 45 45 45 45 45	0 30 5 2 5 4 4 3 2 1 4 30 2 2 1 2 3 3 6 5 3 3 6 5 3 30 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 3 3 3 6 5 3 3 3 3 6 5 3 3 3 3 3 3 3 3 3 3 3 3 3	N 4 N T T T N N N N N N N T T T T T T N	4

7	СХ	Professional training	0	0	0	0	0	4	Ν	
7	CX	Engineering project	0	0	0	120	120	11	Ν	
7	CI	Process design	15	0	0	30	45	4	Ν	
7	CB	Proteomics and protein engineering	30	0	15	0	45	4	Ν	
Sums for t	he semest	er: 7	120	0	45	165	330	30	0	0
TOTALS FOR ALL SEMESTERS:			1175	465	872	195	2707	210	22	22

Note that not being granted credits from the modules marked with a red flag makes it impossible to make an entry for the next semester (even if the total number of ECTS credits is lower than the permissible debt), these are modules continued in the next semester or modules in which failure to achieve all assumed learning outcomes does not allow one to continue studies in the modules included in the next semester's study programme

3.2.3. Elective modules

The following modules are an extension of the table from the chapter 3.2.2. They can be chosen by students regardless of their specialisation / education path.

Semester	Org.Unit	name of the subject	Lecture	Class	Laboratory	Project/ Seminar	Sum of hours	ECTS	Exam	Mand.
2	ZE	Fundamentals of economics	30	0	0	0	30	2	Ν	
2	ZO	Fundamentals of management	30	0	0	0	30	2	Ν	
3	DJ	English (A)	0	30	0	0	30	2	Ν	
3	DJ	English (B)	0	30	0	0	30	2	Ν	
3	DJ	French (A)	0	30	0	0	30	2	Ν	
3	DJ	French (B)	0	30	0	0	30	2	Ν	
3	DJ	German A	0	30	0	0	30	2	Ν	
3	DJ	German (A)	0	30	0	0	30	2	Ν	
3	DJ	Russian (A)	0	30	0	0	30	2	Ν	
3	DJ	Russian (B)	0	30	0	0	30	2	Ν	
4	DJ	English (A)	0	30	0	0	30	2	Ν	
4	DJ	English (B)	0	30	0	0	30	2	Ν	
4	DJ	French (A)	0	30	0	0	30	2	Ν	
4	DJ	French (B)	0	30	0	0	30	2	Ν	
4	DJ	German A	0	30	0	0	30	2	Ν	
4	DJ	German (A)	0	30	0	0	30	2	Ν	
4	DJ	Russian (A)	0	30	0	0	30	2	Ν	
4	DJ	Russian (B)	0	30	0	0	30	2	Ν	
5	DJ	English (A)	0	30	0	0	30	2	Ν	
5	DJ	English (B)	0	30	0	0	30	2	Ν	
5	DJ	French (A)	0	30	0	0	30	2	Ν	
5	DJ	French (B)	0	30	0	0	30	2	Ν	
5	DJ	German A	0	30	0	0	30	2	Ν	
5	DJ	German (A)	0	30	0	0	30	2	Ν	
5	DJ	Russian (A)	0	30	0	0	30	2	Ν	
5	DJ	Russian (B)	0	30	0	0	30	2	Ν	
6	DJ	English (A)	0	30	0	0	30	3	Т	
6	DJ	English (B)	0	30	0	0	30	3	Т	
6	DJ	French (A)	0	30	0	0	30	3	Т	
6	DJ	French (B)	0	30	0	0	30	3	Т	
6	DJ	German A	0	30	0	0	30	3	Т	
6	DJ	German (A)	0	30	0	0	30	3	Т	
6	DJ	Russian (A)	0	30	0	0	30	3	Т	
6	DJ	Russian (B)	0	30	0	0	30	3	Т	
7	CF	Bioinorganic chemistry	15	0	0	0	15	2	Ν	
7	CB	Cell signalling	15	0	0	0	15	2	Ν	
7	CN	Remediation of toxic substances in environmental material	15	0	0	0	15	2	Ν	
7	СВ	Molecular taxonomy	15	0	0	0	15	2	Ν	
7	CN	Application of biotechnology in modern therapy	15	0	0	0	15	2	Ν	

3.2.4. Verification methods of learning outcomes

Detailed rules and methods for the verification and assessment of learning outcomes that allow all learning outcomes to be verified and assessed are described in the Module Activity Sheets. Within the framework of a study programme, verification of learning outcomes is carried out in particular by means of the following methods: written, exam part practical, exam part oral, written pass, pass a part practical, oral pass, essay, colloquium, written test, observation of performance, portfolio, project presentation, written report, oral report, project report, written test.

Detailed information about the verification of learning outcomes achieved by students can be found in the Module Activity Sheets at the URL address: http://krk.prz.edu.pl/plany.pl?lng=EN&W=C&K=H&TK=html&S=1490&C=2020

3.2.5. Programme content

Programme content (educational content) is consistent with the learning outcomes and takes into account, in particular, the current state of knowledge and research methodology in the discipline or disciplines to which the course of study is assigned, as well as the results of scientific activity in this discipline or disciplines. A detailed description of the program content is available in the Module Activity Sheets at the URL: http://krk.prz.edu.pl/plany.pl?lng=EN&W=C&K=H&TK=html& S=1490&C=2020, which are an integral part of the study programme.

Academic savoir - vivre	K_W15, K_U06, K_K03					
 Principles and norms of behavior in interpersonal relationships. The origin of the concept of etiquette. Legal and moral norms and custom. The universal rules of the etiquette. Personal culture.Importance of good morals in private and professional life.Stereotypy.Good manners and the image. Classic savoir-vivre rules Fundamentals of priority and principles of its application. Forms of showing respect. Welcome - the rules and exceptions. Titles in the academic environment.Personal and business procedures.Preferred - rules and exceptions. Wishes and congratulations.Faux pas. Communication etiquette. Standards of good behavior in interpersonal communication. Non-verbal communication Telephone conversation label. Culture of correspondence.Network. Elegance of public speaking. The importance of clothing in creating a positive image. Savoir vivre a choice of dress. General dress rules. Clothing accessories. Fashion and extravagance.The most frequent weaknesses in the selection of individual elements of the outfit.The right outer appearance as part of the positive image. 						
Analytical chemistry K_W04, K_U06, K_K01, K_K03						
 Classification of analytical chemistry, scale, accuracy and precision scheme of quantitative analysis. Classification and characteristics of n Alkacymetric. Reductometry and oxidimetry. Complexometry. Precipita calculations and analyses in the field of volumetric and gravimetric m Redox: determination of Fe(II) in Mohr's salt, determination of Cu(II) concentrations. Precipitation analysis: determination of Cl- ions conce gravimetric methods. 	of a method. Analytical errors, statistical evaluation of results. General methods of chemical analysis. Theoretical basis of volumetric analysis. tion analysis, effects accompanying solid product separation. Chemical lethods. • Alkacymetric: determination of sulphuric acid concentration. • concentration. • Complexometry: determination of Ca(II) or Mg(II) ionic entration. • Chemical calculations in the field of volumetric analysis and					
Biocatalysis	K_W08, K_W10, K_W14, K_U03, K_U19, K_K01, K_K03					
Enzyme composition • Enzymatic mechanisms • Enzyme kinetics; enzymatic processes	• Enzyme immobilisation • Industrial enzymatic processes; samples of					
Biochemistry	K_W05, K_W14, K_U06, K_U09, K_U15, K_K01, K_K03					
• Biochemistry - the molecular logic of living organisms. • Structure and p Basic aspects of the protein structure and function. Myoglobin and he Enzyme kinetics and inhibition. Control of enzyme activity. • Carbohyd Glycoproteins. • Lipids. Structure of cell membranes. Mechanisms of transduction in cell. • Transduction of genetic information in cell. DNA s Identification of amino acids and proteins by specific colour reactions an simple sugars and polisaccharides by colour reactions. Hydrolysis of Hydrolysis of starch. • Isolation of cholesterol from a chicken egg yol nitrate(III) levels in meat products with the Grieass reagent. • Metabolis and gluconeogenesis. • Cellular respiration and energetics: citric a determination of superoxide dismutase (SOD) activity from the yeast Sad gel electrophoresis and negative staining. • Native gel electrophoresis and filtration. • Separation of lysozyme from chicken egg by ion-exchange children of superoxide dismutase (SOD)	roperties of amino acids. Proteins: a hierarchical organization of structure. emoglobin. • Introduction to enzymes. Factors affecting enzyme activity. rates: monosaccharide, oligosaccharide and polysaccharides structures. f transport across cell membranes. • Membrane receptors and sygnal structure and replication. RNA synthesis and splicing. Protein synthesis. • d TLC method. • Determination of protein concentration. • Identification of sucrose. • Separation of amylose and amylopectin from potato starch. k. Identification of cholesterol by Salkowski method. • Determination of sm: organisation and basic ideas. • Carbohydrate metabolism: glycolysis acid cycle, oxidative phosphorylation, photosynthesis. • Isolation and ccharomyces cerevisiae. • Identification of superoxide dismutase by native nd identification of LDH isoenzymes. • Isolation of macromolecules by gel romatography. • Identification of lysozyme by SDS-PAGE electrophoresis.					
Bioinformatics	K_W01, K_W03, K_W14, K_U01, K_U02, K_U06, K_U08, K_U09, K_U10, K_K01					
Introduction to bioinformatics. Basic concepts. E-learning in biotechn Computer representation and visualisation of biopolymer structures sequential information • PCA and cluster analysis methods in bioinformat of protein in PDB database	ology. • Data mining methods in bioinformatics • Sequence alignment • • Bioinformatic databases. Computer representation of structural and atics • Integrated sequence search system • 3D visualisation and analysis					
Biomaterials processing	K_W04, K_W10, K_U16, K_K01					
Classification of polymers. Basic definitions for polymer chemistry:mol Polymerization classifications • Technological metods of polymerization polyolefins. Hydrogels - fabrication and properties. • Ceramic biomaterial biomaterials technology • Alumina in bone surgery and dentals. Ma hydroxyapatite. • Methods for the preparation and properties of porous of Technology and properties of metallic biomaterials. • Technology and properties of selected polymeric biomaterials. • Preparation and characterization of se	ecular mass, polymerization degree, space building. Polyreactions types. : mass, solvent, suspensions and emulsion. Polyurethanes, polyamides, Is - introduction. Classification of ceramic biomaterials. Outline of ceramic nufacturing of alumina biomaterials Manufacturing and properties of ceramic biomaterials • Technology and properties of carbon biomaterials . oerlies of the composite biomaterials • Preparation and characterization of lected ceramic biomaterials.					
Biomolecular processes modeling	K_W03, K_W14, K_U01, K_U08, K_U19, K_K01, K_K03					
• Main conceptions of biomolecular modeling. Fundamentals of molecular modeling methods: molecular mechanics, molecular dynamics, Mc Carlo method. Molecular forces: covalent, electrostatic, hydrogen and hydrophobic interactions. Basics of molecular quantum mechanics: ab in methods, semi-empirical methods, DFT method, hybrid methods. Methods of optimization of molecular geometry. Biotechnological bases, or biomolecular bases. Elements of homological analysis . Phylogenetic analysis in proteins. Protein modeling: amino acids, peptides, protein modeling of protein structure (primary, secondary, tertiary and quaternary structure). Application of molecular modeling methods in conformatic analysis of biological systems. Study of reactivity by quantum chemistry methods. Computer modeling and study of reaction kinetics thermodynamics. Application of molecular modeling in the design of pharmacophores. Quantitative structure-activity relation QSAR methods (2D-QS 3D-QSAR, 4D-QSAR, 5D-QSAR, 6D-QSAR). Kinds of structural indexes and techniques of their calculation. CoMFA and CoMSIA methods their application is biotechnology. • Data bases of structural proteins in biomolelular modeling. Homology and phylogenetic analysis of protein structure-activity relation QSAR methods (2D-QS 3D-QSAR, 4D-QSAR, 5D-QSAR) Quantum chemistry investigation of analysis. Electrostatic properties of biomolecular modeling in the design of protein structure. Conformational analysis. Electrostatic properties of biomolecular modeling is proteins. Modeling of protein structure modeling. Homology and phylogenetic analysis of protein structure conformation analysis. Computer soft and proteins. Computer modeling and proteins. Computer modeling is proteined within analysis of protein structure-activity relation QSAR methods (2D-QS 3D-QSAR, 4D-QSAR, 5D-QSAR, 6D-QSAR). Kinds of structural indexes and techniques of their calculation. CoMFA and CoMSIA methods their applications in biotechnology. • Data bases of structural proteins in biomolecular modeling.						
Biophysics	K_W02, K_U06, K_K01					
• The bases of the biophysics. Classification of biomolecules. Classific molecules structure. Interactions of molecules and macromolecules. • M biopolymers: the method of light scattering statistically (Rayleigh), dyna method of sedimentation, MALDI-TOF, Gel Permeation Chromatograph systems and processes. Phase transitions. Entropy, enthalpy, free en- mass transportation, viscosity of polymers. Thermal analysis method temperature-modulated DSC, TMA, thermal conductivity. • The chosen spectroscopic (IR, spectroscopy Raman, NMR), X-ray spectroscopy (techniques: optical microscopy, electron microscopy, atomic force micro proprieties of polymers (dynamic mechanical analysis -DMA). Mechanic hearing system; visual system, respiration system, the circulation blood temperatures and moisture, the electric and magnetic field; the radiation	cation of biomacromolecules (biopolymers). Chemical structures. Super- ethods of the determination of molecular masses and their distribution for mics (quasi-elastic) - the viscometery, osmometery, bulio- and cryoscopy, ny (GPC) or Self-Exclusion Chromatography (SEC). • Biothermodynamic ergy, heat capacity biopolymers. The phenomena of thermo conductivity is for examination the thermal proprieties of biopolymers: TGA, DSC, physical methods for the investigations of the structure of biopolymers: SAXS, WAXS), degree amorphous and crystalline phases. Microscopic oscopy (AFM). Static and dynamic methods to determine the mechanical al modules. • The elements of the biophysics of organs: the sense of the system. The influence of physical factors on alive organisms (mechanical, ionizing and non-ionizing). Spectroscopy and scanning, topography NMR.					

Bioprocess engineering	
------------------------	--

K_W10, K_W19, K_U12, K_K01

• Heat Transfer: (Fixed) Stationary Heat Transfer, Heat Transfer Driving Force, Kinds of the Heat Transfer: Thermal Conduction, I-St Fourier Law, Thermal Conduction Coefficient, Heat Non- And Conductors, Thermal Conduction Across Wall, Heat Transfer Resistance, Heat Convection Newton Equation, Heat Transfer Cases, Criterial Numbers And Equations, Heat Radiation, Heat Screen Meaning, Heat Losses to Environment Overall Heat Transfer, Newton Equation for Overall Heat Transfer, Overall Heat Transfer Coefficient, Some Cases of Transient Heat Transfer, Basis Of Heat Exchanger Design. Mass Transfer: (Fixed) Stationary Mass Transfer, Driving Force, Mass Diffusion, I-St Fick Law, Mass Diffusion Coefficients, Mass Transfer Resistance, Kinds of the Mass Diffusion, Mass Diffusion, Mass Convection, Newton Kinetic Equation, Mass Transfer Cases, Criterial Numbers And Equations, Overall Mass Transfer, Newton Equation for Overall Mass Transfer, Overall Mass Transfer Coefficient, Disappearance of Mass Transfer Resistance, Overall Mass Transfer Driving Force, Basis Of Mass Exchanger Design. Concurrent Heat and Mass Transfer – Basic Knowledge Absorption; A) Process Definition, B) Static's of the Process – Absorption Equilibrium, Kinds of the Equilibrium Line Notations, C) Process Kinetics, Mass and Overall Mass Transport in the Absorption, D) Mass Balance of the Absorption, Operation Line of the Absorption, Minimum of the Spraying Liquid Mass and Velocity, E) Overall Mass Transfer Driving Force int Absorption, F) Dynamic Model of the Absorption, Chemisorption. • Distillation And Rectification: Points A) to F) Analogous to the Same Above with the Following Differences: Distillation Equilibrium for Binary Component System, Kinds of the Equilibrium Line Notations - for Ideal System – Raoult Law, Nonideal Systems – Aberrations From Raoult Law, Azeotropes, Differential Distillation, Equilibrium Distillation, Mass and Overall Mass Transport in the Rectification, Batch Rectification, Continuous Rectification, Heat and Mass Balances of the Rectification, Heat and Mass Balances of the Operated Plate, Operation Lines of the Rectification, Minimum and Maximum Minimum of the Column Reflux, Column Efficiency Measured by Theoretical Plate Amount. Exstraction: Points A) to F) Analogous to the Same Above with the Following Differences: Extraction Equilibrium for Ternary Component System, Ideal System - Nernst Law, Nonideal Systems - Aberrations From Nernst Law, Stepping Extraction Parallel-Current and Counter-Current Extraction, Minimum and Maximum of the Extrahent Mass, Kinds of the Mathematics Solution of the Mentioned Above Extraction Cases, Column Extraction, Dynamic Model of the Column Extraction.

Bioreactors

K_W07, K_W11, K_U15, K_U19, K_K01

• Definition of bioprocess engineering. Stoichiometry of microbial growth, oxygen balance. Kinetics of cells growth, product formation, kinetics of enzymatic reactions. Bioreactors: batch reactor, chemostat, chemostat with recycle, multistage chemostat systems, plug flow reactor, bubble-column reactors, fluidization reactors, membrane reactors. Designing of bioreactors. Scaling-up and scaling-down.

Bioreactors II	K_W07, K_W11, K_U09, K_K02
Designing of real bioreactors of different types with taking into account th	e kinetics of bioreaction and mass and heat transfer.

Biosensors

K_W10, K_U06, K_K01

• Classification of chemical sensors. Theoretical basics of chemical recognition. • Electrochemical sensors - potentiometric, amperometric and conductometric sensors. • Optical sensor, physics of optical fibers, optical fiber sensors – design, operation and examples. • Mass sensors, basics of piezo- and pyroelectricity, chemical layers of mass sensors. • Thermal sensors – pyroelectric sensors, gas catalytic sensors. • Applications of chemical sensors in industrial analytical control, clinical chemistry and environment protection. Prospects of development of chemical sensors.

Cell biology

K_W05, K_W14, K_U06, K_U09, K_U15, K_K01, K_K03

• Similarities and differences in structure of prokaryotic and eukaryotic cells. • Basic research methods applied in studies of cell and its components. • Evolution and function of subcellular structures. • Mechanisms of cell membrane transport. • Signal transduction in the cell. • Cell cycle and course of mitosis and meiosis. • Basic laboratory methods and safety rules and regulations. • Microscopic observations of cells and tissues. • Isolation of chlorophasts and mitochondria from the plant cells. • Separation of chlorophylls and carotenoids be thin layer chromatography.

Chemical and biotechnological equipment

K_W11, K_W13, K_U17, K_K01

• Classification of chemical apparatus. Fundamentals of transport phenomena of heat and mass momentum. The nature of the fluid flow. Fluid flow resistance. Liquid outflow from the tank • Apparatus for mixing, aeration and disintegration of biomass. Demand for mixing power. • Bioreactors and fermenters - construction solutions and the principle of operation. Bioprocesses in fluidised bed. • Characteristics of comminuted materials. • Slurry separation by deposition, sedimentation, flotation, classification. • Filtration and spinning of biological suspensions, process rules and apparatus. • Heat exchangers, evaporators and sterilizers. • Apparatus for absorption and adsorption. • Apparatus for distillation and rectification. • Apparatus for extraction and crystallization

Computer science	
------------------	--

K_W03, K_W14, K_U02, K_U08, K_K01

• Definitions of basic concepts: the algorithm, computer program, computer system, informatic system, the operating system. The main components of a computer and their functions. Multiprocessor computer. • Operating systems and their types. Computer programs, utilities and tools. MS-Office programs: Word, PowerPoint. • Computer viruses, protection and prevention. Computer networks (Internet, Intranet). Telecommunications systems. Websites construction. Legal, ethical and social issues of computer science. • Representation formalisms of algorithms: data flow diagram, program flow diagram. Computer program development cycle: specification, design, coding, testing, documentation. • The basic elements of the configuration of software environment and compiler for C++. Construction of programs and units in C++. Data types defined in C++. • Main control statements in C++. Static and dynamic variables. Computer memory management. Programming of branches and loops. The definition of functions. Program testing according to principles of software engineering. • The Windows operating system. Networks. Internet-based education. • Text editor. Development of laboratory data. Preparing of presentation. • Chemical structure editors. • Basics of programming in C++ language. Preparation of the project, the development of the algorithm, implementation of procedures, running & testing program and passing the subject. • Creating of process and technological diagrams. • Practical test covering skills acquired on L01-L05.

Com	nuter-aided	research
COIII	pulei-alueu	research

K_W03, K_U01, K_U06, K_U08

• Strategies of searching chemical structures and metabolic databases • Chemical structure formats. 3D visualization of chemical structures • CAOS - computer prediction of biodegradation pathways for chemical compounds and generation of combinatorial libraries • Computer design of new drugs • Chemical similarity

K_W10, K_W12, K_U16, K_U17, K_K03

Drug from the idea for the implementation: Leading Structure - search; relation between the structure and the activity of the drug; Pharmacokinetics; QSAR; Combinatorial Synthesis. Laboratory: chosen methods of synthesis of drugs. • Definition of the medicine/drug, stages of seeking the medicine, choice of the site of action of the medicine, choice of the biological assay, seeking the leading structure. • Synthesis on the solid phase - bases and assumptions. • Combinatorial synthesis - idea, methods. • Isolation and purification of the active ingredient, elucidation the structure of the active compound. • Pharmacophore, isostere - definition, examples. • Synthesis of the most popular types of the reaction used in the synthesis of medicines/drugs in including analysis of the applied synthesis in the pharmaceutical industry. • Written passing the subject. • Performing five laboratory exercises from the area of the isolation, the synthesis and analysis of medical products during of 5 lesson according to instructions placed on sd of the coordinator, before beginning of the cycle classes.

• Technical letter • Rectangular projections, axonometric views, views and sections. • Technical charts. • Rules for dimensioning. • Assembly drawings. • Processes, apparatus and devices used in chemical technology and biotechnology and their standardized graphic symbols. • Preliminary information, start AutoCAD and basic settings. • Exercises for features and commands of AutoCAD. • Application of AutoCAD specific functions. • Creating a simple technical drawing - projection and dimensioning of a complex geometric solid. • Making production and assembly drawings of machines parts and chemical apparatus

Engineering project

K U01, K U03, K U04, K U06, K U08, K U09, K U10, K K01, K K04

Drug design and synthesis

• Getting to know the professional literature on the subject • Experimental measurements, the creation of a computer program or other work related to the use of research tools that are appropriate to the studied area and educational profile. Development of research results in the form of a written report. • Discussing how to prepare a multimedia presentation, rules for presenting papers. Presentation of the diploma project. Discussions after the multimedia presentation of the results of own research presented by students.

Environmental protection and biotechnology

K_W14, K_U03, K_U19, K_K02, K_K05

• Definitions and fundamental phrases. Environment, environment protection, ecology, ecological impact, system, ecosystem, paradigm, civilization. Elements of theory of systems. Reductionism versus holism in reality description and understanding. Micro- and macro-explanation concept. Soft and hard technologies. • Ecological equilibrium. Elements of ecological equilibrium of Earth. Energy balance of Earth. Cycles of chemicals in the environment. Circulation of matter (H2O, CO2, N2, O2, heavy metals) and energy. Populations and their features. Agglomeration process, dissipative structures. Agriculture and ecology. Contamination caused by farm plant and animal production. Soil components and their transformation. Degradation and protection of soils. Biological sewage and waste water purification. Importance of fuels and energy in agriculture economy. • Chemical inorganic and organic pollutants in environment and their biological and medical action. Chemical inorganic and organic pollutants in environment and their biological and medical action. Classifications and systematics of pollutants. Inorganic and organic persistent pollutants, their scattering, bioaccumulation, toxicology (enzyme dysfunction, heme biosynnthesis disfunction, oxidative phosphorylation inhibition, narcosis, DNA modification), and hormone-like activity. Tobacco smoke as a pollution agent. Purification of liquid waste by means of defined bacteria cultures. Ecological validation of marketable washing powders. • Toxic metals and organic pollutants level in air, water, soil and food as an indicator of environment quality. System approach to calculation and conversion of different solution concentration expressions and units especially for applied in ecology and in medical analytical chemistry. Determination of toxic metals as Hg, Cd and Pb in biological and environment samples. Determination of soil quality parameters. Tests and ecological validation of common plastics. • Energy production and ecology in XXI age. Ecological valuation and economy of applied energy sources. Renewable sources of energy. Biomass and bio-fuels. Soft technologies rising up on the basis of solar energy as wind, solar collectors, heat pumps etc. Solar economy and possibility of solar age. Thermal and photovoltaic technology applications of solar energy. The passage to the Solar Age and its political, legislative and tax limitations. Geothermic energy as a large scale energy source of growing importance. Ecological validation of marketable sources of light. Analysis of thermal solar energy home set with solar collector. Analysis of photovoltaic solar energy home set. • Wastes disposal. Wastes in nature technologies in comparison to that in man's technologies. Characteristics of wastes generated by power industry and other kinds of industry. Environmentally hazardous products. The life cycle assessment approach and ISO standards.. Waste management in local communes. An overview of waste utilization methods. Waste combustion. Ecological and ethical aspects of chemical production. • Current ecological problems. The current ecological problems of Poland and UE. Look over of environment friendly technologies and biological methods of environment protection. Environment legislation in Poland and UE. The problem of ecological taxes Enzymology K_W08, K_W14, K_U06, K_U09, K_U15, K_K01, K_K03 • Enzyme structure and function. • Factors influencing enzyme activity. • Methods used in enzyme activity studies. • Enzyme reaction kinetics. Enzymes in biotechnology. • Enzyme activity measurements methodology. • Enzyme activity analysis in biotechnological products.

General and inorganic chemistry

K W04, K U06, K K01, K K03

Struture of atom. Periodicity of chemical properties. Ionization energy, electron affinity, electronegativity. Metal and non-metals. Chemical bonds. Covalent bonds. Formal oxidation state. Molecular orbital and valence bond theory. States of matter. Phase transistions. Gas state. Ideal gas state equation. Units of matter. Solid state. Ionic and molecular crystals. Liquids and solutions. Units of concentration. Chemical equilibrium. Mass action law. • The basic calculations: fundamental laws. Concentration of solutions: way of expression, conversion of concentration, dilution and mixing of solutions. Stoichiometric calculations based on chemical reaction equation. Elemental and real chemical formula. Yield of reaction. Oxidation and reduction reactions. Gas laws. Chemical static, mass action law, chemical equilibrium. • 1. Liquids and solutions. Colligative properties. 2. Electrolytes. Electrolytic dissociation. Strong and weak electrolytes. 3. Acids and bases. Ampholytes. Buffer solutions. 4-7. Properties of elements. Inorganic compounds, preparation methods end properties. Main group metals (1, 2, 13). Elements of group 15-18. 8. D-block elements. Crystal field theory. Spectroscopic and magnetic properties. 9. F-block elements. 10. Complex compounds. Additional compounds. • 1. Electrolytic dissociation of strong and weak electrolytes. Activity and activity coefficient, ionic strength, ionic product of water, pH. 2. Dissociation constant and degree. 3. Buffer solutions. 4. Hydrolysis, the hydrolysis constant and degree. 5. Solubility product. • 1. Basic laboratory operations and equipment. Synthesis of inorganic compounds. 2. Classification of inorganic compounds. 3. Types of chemical reactions. 4. Solutions: preparation and concentration calculations. 5. electrolytic degree and constant, pH, alkacymetric indicators. 6. Buffer solutions. 7. Inorganic complexes. 8. Hydrolysis - the hydrolysis constant and degree. 9. Precipitation, dissolving and chemical reactions. 6. Buffer solutions. 7. Inorganic comp

General microbiology

K_W07, K_W14, K_U06, K_U09, K_U15, K_K01, K_K03

• The structure and function of prokaryotic cells • Metabolic diversity of microorganisms • Bacterial secondary metabolites and their importance in the environment • The role of microorganisms in biogeochemical cycles • Interaction of microorganisms • The basic microbiological techniques • Isolation and preliminary identification of microorganisms

(Conotic onginooring	
00110000010001010	

K_W06, K_W09, K_W12, K_W14, K_U06, K_U09, K_U15, K_U19,
K_K01, K_K03, K_K07

• Methods for obtaining DNA fragments: cutting the genomic DNA with restriction enzymes, chemical synthesis, reverse transcription, polymerase chain reaction (PCR). The use of these fragments for various purposes in molecular genetics. Molecular cloning of genes in prokaryotic and eukaryotic cells. Plasmid vectors, cosmids, phage vectors, shuttle vectors, YAC (yeast artificial chromosome). Construction of vectors: restriction enzymes, ligation. Mechanisms for obtaining transgenic organisms: transformation, transduction, transfection. Techniques for analysis and identification of transformants. Expression systems in bacteria and eukaryotic cells. Manipulation of gene expression. Controlled in-vitro mutagenesis. Techniques for transgenic plants and animals. Purification and identification of the recombinant proteins obtained by different methods of analysis: affinity chromatography, electrophoresis and immunoblotting, mass spectrometry. • Evolution of NCBI model. Understanding the diversity of DNA sequences deposited in the databases. Finding and selective use of information in planning experiments. Designing PCR primers for the selected sequence and in any orientation, with attached restriction sites occurring at the start and stop codons for protein domains. The construction of restriction map, characterization of restriction enzymes. Cloning without the use of restriction enzymes. Codon optimization. Designing SNP detection methods (PCR-RFLP, minisequencing) • Application of the techniques of genetic transformation for cloning, sequencing and overexpression. Transformation of transgenic E. coli with pET expression vector or pGlo coding GFP protein. Cultivation of bacteria on the discriminating medium. The chemical transformation and electrotransformation. Isolation of colonies containing cloned gene. Preparation of competent bacteria and plasmids for transformation.

Genetics

K_W06, K_W14, K_U03, K_U06, K_U09, K_K01, K_K03

Rules of inheritance, discoveries of Mendel, Morgan, basis of the quantitative and population genetics.
 The structure of DNA and organization of genetic material.
 Mutations, chromosomal aberrations, aneuploidy, polyploidy.
 Genetic crosses, determining the phenotype of offspring and parents, including prediction of Blood type and genetic diseases in humans and prediction of the outcomes of breeding procedures in plants and animals

Immunological te	chniques in	biotechnology
------------------	-------------	---------------

٢.	_W05,	K	_W09,	K_	_W14,	K	_U06,	K_	_U09,	K_	_U15,	K_	_U17,	K_	_K01,
<	_K03														

• Structure of animal and human immune system, lymphoid organs – primary and secondary, cytokine receptors and their properties, complement system • Antigens and the mechanisms of their identification. Characteristics of innate and acquired immunological response mechanisms. Mechanism of receptor activation in B and T cells by an antigen: antigen processing and presentation • Signal transmission between the components of immune system, structure of the immune system T cell receptors • In vivo production of monoclonal and polyclonal antibodies. Obtaining monoclonal antibodies using the method of in vivo and in vitro immunization, and the method of genetic engineering • Methods of the qualitative and quantitative evaluation of detectable macromolecules, using the ELISA method, immunoprecipitation, immunobloting, flow cytometry • The use of recombinant antibodies in a diagnosis and therapy. Classic and recombinant vaccines

n vitro cultures	K_W14, K_U06, K_U09, K_U19, K_K03
------------------	-----------------------------------

• Definition of plant in vitro culture. Application of plant in vitro culture • Organisation of in vitro culture laboratory: equipment, rules of sterile work, • Methods of terilization for glasware, media, tool. • Media used in plant in vitro culture: types of media, ingredients (macro- microelemets, vitamins, plant hormones, aminoacids, sugars, geling agents). Composition and preparation of Murashige nad Skoog medium 1962. • Primary and secondary explants. Sources of primary explants. Methods of primary explants harvesting. • Organogenesis in in vitro culture. Micropropagation as technological application of in vitro culture. • Kallus culture: induction, maintenance, application. • Suspension culture: induction maintenance, application. • Root culture. • Application of in vitro culture in obtainig virus free plants. • Anther culture. Microspore culture and production of dihaploids. • Isolation, culture and fusion of plant protoplasts. • Work safety • Rools of sterile work in plant in vitro culture laboratory. Operetion of equipment. • Preparation of medium for carrot callus induction. • Induction of calli from primary explants of carrot • Preparation of medium for micropropafation of wild strawberry • Transpantation of wild strawberry microplants • Isolation of mature rye embryos.

Industrial microbiology

K_W07, K_W10, K_U12, K_U18, K_U19, K_K01

• Biological and technological criteria for the classification of microorganisms used in the industry • Methods for the isolation of microorganisms for industrial use from environmental samples and optimization of conditions in laboratory culture • The correct use of terminology in the field of naming microbiological • Secondary metabolites as precursors and products of specific biosynthesis • Fermentation processes and their implementation on an industrial scale • Mechanisms of xenobiotics biodegradation • Microbiology of food • Techniques for isolating microorganisms for industrial use from the environmental samples • Screening tests of proteolytic microorganisms in a laboratory • Methods for improving production characteristics of industrial microorganisms

Instrumental analysis

K_W04, K_W10, K_U16, K_U17, K_K01

• Analytical process, its elements and statistical evaluation of each step. Analysis of elements and compounds by spectroscopic methods. Atomic Emission Spectroscopy - basis of the method, methods of sample atomization and excitation, applications. Atomic absorption spectroscopy, Molecular spectroscopy in the ultraviolet and visible light. Infrared spectroscopy. Spectra recording techniques, methods of quantitative and yaplications and spectra. Fundamentals of mass spectrometry. Interpretation and application of analytical mass spectra for organic compounds. Chromatographic methods for separation efficiency. Definition and determination of resolution index, theoretical plate number, selectivity factor. Separation techniques in liquid chromatography - adsorption chromatography, partition - normal/reverse chromatography, ion-exchange chromatography, gel filtration chromatography - adsorption chromatography, partition - normal/reverse chromatography, ion-exchange chromatography, gel filtration chromatography - band broadening, column efficiency. Optimization of column performance. Chromatographic methods of qualitative and quantitative analysis. Potentiometric methods. Design, operation and application of the selection of the selectione. Conductometry and its analytical application. Voltammetric methods - linear-sweep LSV, cyclic CV, and stripping CSV, ASV techniques. Quantitative analysis is the composition of mixtures of organic compounds using a GC-MS. Identification and a quantitative analysis by IR spectroscopy. Determination of the concentration of substances bythe UV-VIS spectroscopy. Structural analysis of the composition of substances bythe UV-VIS spectroscopy. Structural analysis on the base of 1H-NMR spectra. Determination of the concentration of substances bythe UV-VIS spectroscopy. Structural analysis on the base of 1H-NMR spectra.

Mathematics

K_W01, K_U06, K_K01

· Elements of mathematical logic and set theory. Basic properties functions of one real variable, polynomials, Horner's scheme, rational functions and other elementary functions, arc functions. • Sequences of numbers: monotonicity and boundedness of sequences, limit of a sequence theorems about existence of a limit, Napierian base and its applications. Series of numbers: properties of series of numbers, tests for convergence of series, tests for divergence of series. Limit and continuity of function of real variable: definitions of limit, counting properties of limits of functions, notion of continuity of a function. Asymptotes of a function. • Differential calculus of function of one real variable: notion of derivative of function. derivatives of higher order, derivatives of basic elementary functions, derivative of composite function, De l'Hospital's theorem, mean value theorems, investigation of monotonicity and determination of extrema of functions, convex and concave functions, points of inflexion of graph of function, investigation of the behavior and systematic procedure in graphing of function. • Integral calculus of function of one real variable: notions of primitive function and indefinite integral, integration by parts and by substitution, integration of rational functions, integration of irrational functions, integration of irrational functions, integration of definite integral, applications of definite integrals, improper integrals. • The set of complex numbers: canonical and polar form of a complex number, de Moivre's formula, calculation of power and root of complex numbers. Matrices: definition, operations on matrixes and its properties, square matrices, determinant and its properties, inverse matrix, rank of a matrix Systems of linear equations: Kronecker-Capelli's theorem • Ordinary differential equations: notions of general solution and particular solution initial-value problem, ordinary differential equations of first-order, ordinary differential equations of second-order. • Elements of calculus of vectors and analytic geometry: vectors, operations on vectors and its properties, scalar product of vectors and its properties, vector product and triple scalar product of vectors, equations of a plane and of a straight line in the space. • Basic properties of function of several variables: limit and continuity of functions of several variables, partial derivatives, extrema of functions of several variables. Elements of field theory. Double and triple integrals

Molecular biology

K_W05, K_W06, K_W14, K_U06, K_U09, K_K01, K_K03

Basic terminology in the field of molecular biology. Differences in the structure of genetic information between pro and eucariots. Introduction to labolatory procedures - isolation of nucleic acids.
 Plasmids: structure, replication, biological function, transfer of information between cells, resiatance to unfavorable environmental conditions like antibitics, heave metal ions, sulfonamids, phenol and its derivatives. Virulence towards host, elimination of competitors from environment. Systematcs of pasmids. Application of plasmids in genetic ingeniering; Ti, Ri, E. coli plasmids.Introduction to laboratorie; restriction enzymes, restriction mappiong
 Structure of the bacterial chromosome. Recplication of bacteroal chromosome. RCR.
 Translation in procariotic cells. Posttranslational modification of proteins.
 Structure of eucariotic chromosom: compartmentalization of eucariotic chromosom: centromer, telomers, eucgromatin, heterochromatin, nucleosom, histones. Replication of eucariotic chromosom.
 E. coli plasmids isolation.
 DNA with restriction enzymes.
 PCR • Restriction mapping, aanalizys of PCR products.

Organic chemistry

K_W04, K_W10, K_U16, K_U17, K_K03

• Structure and isomerism of organic compounds. Efects of electronic displacements versus explanation of properties of organic compounds. Classification of organic compounds. Type of organic reactions and kinds of mechanisms. Chemical individuals. • Saturated and unsaturated hydrocarbons (alkene, alkadiene, alkyne, isoprenoids, steroids). Aromatic hydrocarbons. • Nomenclature of saturated, unsaturated and aromatic hydrocarbons. • Reactions of saturated, unsaturated and aromatic hydrocarbons. • Halogen derivatives of hydrocarbons, metalorganic compounds. Alcohols and phenols. Ethers. Aldehyde and ketones (aldol condensation). Mono- and polycarboxylic acids, halogen, hydroxy and oxo acids. Derivatives of carboxylic acid (halogens, anhydrides, amides). Esters (lactides, lactones, fats, soap, ester condensation). Nitrogen organic compounds: nitro compounds, amines, amino acids, peptides, proteins. Carbohydrates. Selected heterocyclic compounds. • Techniques and characterization of selected organic compounds.

Packeges of application software

K_W03, K_U02, K_U08

• Application of MS Excel to tabelarize functions, create simple and advanced plot charts, perform array operations, simple statistical analysis, operations with macros and to solve chemical problems and model simple chemical processes using solver tool. • Application of Origin Lab software to prepare professional 2D and 3D charts, to perform statistical processing of experimental data, to estimate parameters for equation describing experimental data, to perform differentiation and integration of discrete functions • Application of Matlab and/or Maple programs for arithmetic calculations, algebraic transformations, solution of linear and nonlinear equations, inequalities and systems of equations, symbolic and numerical function integration and differentiation, matrix algebra, solving differential equations, graphing functions of one and two variables.

Introduction to Programming in Matlab or Maple. Creation of simple programs for solving selected mathematical problems.

K_W04, K_U06, K_K01, K_K03 Physical chemistry • The theory of perfect gases. Equations of state. Dalton's law and Amagat's law. The theories of real gases. The kinetic theory of perfect gases Chemical thermodynamics. System. Surroundings. Work. Heat. Cyclic processes. Reversible processes. Isothermal reversible expansion of a gas The first law of thermodynamics. Internal energy. Enthalpy. Heat capacity of gases, liquids and solids. Thermochemistry. Enthalpy of formation of compounds. Heat of solubility. Bond energy. The temperature dependence of reaction rate on temperature. The second and the third law of thermodynamics. Spontaneous transformations. Carnot cycle. Entropy. Entropy changes in reversible and irreversible processes. Entropy of mixing. Gibbs energy. Helmholtz energy. Differentials and derivatives of thermodynamic functions. The influence of pressure and temperature on free energy. Thermodynamic criteria of spontaneity of processes. Partial molar quantities. Chemical potential. Interatomic and intermolecular interactions. Viscosity and surface tension of liquids. Phase equilibria and diagrams. Three-component systems. Phase rule. Clapeyron equation Clausius-Clapeyron equation. Vapor pressures over ideal solutions. Vapor pressures over real solutions. Solubilities of gases and liquids Thermodynamics of ideal solutions. Activity. Activity coefficient. Boiling temperature - composition diagrams of two-component solutions Azeotropes. Colligative properties. Colloidal solutions, micelles. Chemical equilibrium. A thermodynamic equilibrium constant. Chemical equilibrium in gas phase. Gibbs energy function. The influence of pressure and temperature on chemical equilibrium. • Physicochemical calculations connected with theory of perfect and real gases, chemical thermodynamics, phase equilibria, colligative properties of solutions Chemical kinetics. The rate and the order of reaction. Zero, first, second, third and fraction order reactions. Determination of reaction order and rate constant. Dependence of reaction rate and reaction rate constant on temperature. Arrhenius theory. The transition state theory. Complex reactions. Kinetics of enzymatic reaction. Basics of katalysis. Adsorption. Adsorption theories. Electrolyte solutions. Debye-Hückel theory. Specific and molar conductance of strong and weak electrolytes. Transport numbers. Ionic mobility. Thermodynamics of electrolyte solutions. Electrochemistry. Semicells and electrochemical cells. Chemical reactions in an electrochemical cell. Electromotive force of electrochemical cells. Thermodynamics of electrochemical cell. Physicochemical applications of semicells and electrochemical cells. • Physicochemical calculations connected with chemical equilibium, chemical kinetics, simple, complex and enzymatic reactions, theory of electrolyte solutions, ionic conductance and electrodics. • Determination of molar refraction of organic liquids. Determination of surface tension of liquids. Determination of critical micelle concentration. Determination of reaction order and rate. Determination of thermical activation of a chemical reaction. Determination of phase equilibrium in three - component system. Determination of adsorption isotherm. Determination of limiting molar conductivity of electrolyte solution Determination of ΔG , ΔH and ΔS of chemical reaction. Electrochemical determination of solubility constant. Physical education K_K01, K_K03, K_K04 • Acquainting with the rules of participation in classes and the conditions for obtaining a pass. Discussion of the principles of safe use of sports facilities and equipment and safety rules in force during the course. • Implementation of various sets of warm-up exercises and exercises focused on developing the student's basic motor skills. • Shaping general physical fitness, motor coordination, endurance, flexibility, speed through individual selection of sports activities (eg. football, volleyball, basketball, table tennis) or recreational physical activity (eg. badminton, gym exercises). • Physical fitness test: Multistage 20 m Shuttle Run (Beep test). • Acquainting with the rules of participation in classes and credit conditions. Discussion of swimming pool conditions and safety rules applicable during exercise in the aquatic environment. • Initial adaptation to the aquatic environment: - face dipping, eye opening and orientation under the surface of the water, - mastery of breathing in the aquatic environment, familiarization with the buoyancy of water, - control of lying on the breast and back, - plays and games in water. Warm-up exercises, preparing for exercises in water. Learning how to behave in water in difficult and unusual situations: choking, shrinkage, sinking, etc. • Learning backstroke style: lying on the back, slipping, correct leg work with a board on the hips and without a board, proper work of the arms. Improvement of proper coordination of lower and upper limbs. Learning free style: slipping on the chest, proper leg work combined with breathing, exercise with a board and without a board. Learning the proper work of the arms (swimming with a proper body with a proper breath and exhalation). Learning how to coordinate the work of lower and upper limbs with the determination of proper breathing. Learning breaststroke style: proper work of legs with a board and without boards on the chest and on the back, correct work of arms in a classic style. Coordination of lower and upper limbs and breathing in a classic style. Learning to jump on the legs and on the head. • Fitness test: a 25-meter swimming trial chosen by the student Physics K W01, K W02, K K03 • Measurements and physical units. Scalars and vectors. Derivatives in physics. Coordinate Systems. • Motion along a straight Line, Motion in two or three dimensions, kinematics of rotational motion. Newton's laws of motion, Applying Newton's laws Work, power and energy, Potential energy Conservative forces Momentum, Impulse, and Collisions Dynamics of Rotational Motion, Rotation of Rigid Bodies • Periodic motion, differential equations and complex numbers in physics, resonance. Mechanical waves, wave phenomena, acoustics: sound and hearing • Fluid Mechanics Introduction to thermodynamiscs: temperature and heat, Thermal properties of matter, Laws of thermodynamics, entropy • Introduction to physical laboratory classes. The uncertainty of the measurements. • Introduction to electromagnetism: Electric charge and electric field, Gauss's law, Work and electric potential. Capacitance and Dielectrics. Conductors, electric current, resistance, circuits and Electromotive force . Magnetic field. The Lorentz force. A electric charge and current-carrying wire in magnetic field. The magnetic field induced by current flow. Hall effect, Cyclotron, mass spectrometer. The phenomenon of magnetic induction. • Electromagnetic waves: dispersion, Interference, diffraction, polarization. Application of optics. • Introduction to modern physics and quantum mechanics, wave-particle duality of light and matter, probability and uncertainty principle Schrodinger equation, free particle, particle in potential well, stationary states, atomic structure, condensed matter Introduction to nuclear physics. K_W06, K_W09, K_W12, K_W14, K_U03, K_U09, K_U18, K_U19, K_K02, K_K07 Plant biotechnology · Genetics and Biotechnology. Elements of population genetics, genetics and plant breeding. Cytogenetics in plant biotechnology. Molecular diagnosis of plant and pathogen. Genomics research plants. Feedback and gene mapping. Isolation and characterization of genes. Transgenic plants - methods of transformation, identification and breeding. The cell wall - structure and improve biotechnology. The concept of biotechnology. Biomass feedstock biotechnology. Biotransformation of selected chemicals. Plant biotechnology to improve the quality of food, modified starch and other carbohydrates. The transgenic plants as a source of modified oils of storage proteins with improved functional properties. Use of bioreactor cultures of plant cells and tissue. Production of immunotherapeutic agents and biopharmaceuticals in plants. Production of bio fuel. • Regulation of physiological processes, plant growth and development by endogenous and exogenous factors. Creating a structure gene in plant transformation. Industrial strategies for detection of bioactive compounds in plants. Transgenic plants in improving resistance to biotic, abiotic and herbicides. Transformations and functions of lipids (waxes, cutin and suberin). K_W03, K_W13, K_W13, K_W14, K_W19, K_W19, K_U02, K_U08, Process desian K U14, K U14, K U15, K U19, K U19, K K01, K K02, K K03 • Introduction to methods of designing integrated systems technology. Characteristics of simulation programs. Basic rules for the selection of thermodynamic models • An introduction to computing simulation processes (flow of information, analysis of degrees of freedom, the classification of simulation methods). The calculation of chemical reaction processes and reactors. • The criteria for evaluation of the project - "pure" chemical technology. Hierarchical method, an example application. Calculation of the heat exchangers. • Basics of simultaneous methods. Calculation of separators with two liquid phases. • Design Heuristics. The calculation of basic unit operations and analysis of the results (flash calculations, distillation, extractive distillation, absorption). • Calculation of pipeline networks and their elements. The calculation of the basic operations of fluid transport (pumps, compressor, expander, valves). • The use of sensitivity analysis as a tool for selection of parameters of the apparatus. K W12 K W10 K 1112 K 1115 K 1110 K K02

Basic terminology and applicable legal regulations in the field of process safety • Impact of chemicals hazards on the human body environment. • Mathematical description of selected types of failure • Models for dispersing substances • Failure risk analysis methods									
• Basic terminology and applicable legal regulations in the field of process safety • Impact of chemicals hazards on the human body and environment. • Mathematical description of selected types of failure • Models for dispersing substances • Failure risk analysis methods									
	Professional training	K_U02, K_K01, K_K02, K_K03							
	 Training on safety work and anti fire regulations in plant/company/in Introducing to work of plant/company/institution and with their internal pro- 	stitution. Extending of knowledge gained on university in practical way. ocedures. Preparation to job in future.							
	Proteomics and protein engineering	K_W05, K_W10, K_W12, K_W14, K_U03, K_U09, K_U18, K_U19, K_K02							

· Goal and importance of protein engineering · Bioinformatic methods in analysis and characterisation of proteins and its recombinant derivatives · Selected aspects of biophysical and biochemical protein characterisation (i) in-silico (ii) by experimental methods • Design and production of recombinant proteins • Selected aspects of natural and non-natural protein modifications and their importance Purification of biotechnology products K_W10, K_U17, K_K03 Strategies to recover and purify product. The permeate techniques of the mixtures separation: ultrafiltration, osmosis, reverse osmosis microfiltration, dialysis, electrodialysis. Mathematical models of the processes. The examples of applications for species separation in biotechnology. Chromatographic and adsorptive technique of species separation. Thin layer chromatography, column periodical chromatography and continuous chromatography (SMB). Expanded bed adsorption chromatography. The normal and reversed phase chromatography. Ion exchange and gel chromatography. Theory of chromatographic separation: basic mathematical models of adsorption and mass transfer. The influence of process parameters: temperature, composition of mobile phase, solid phase, pH, ion strength of mobile phase on the mixtures separation. The optimization of periodical and continuous process. Principles of selections of chromatographic systems. Capillary electrophoresis and electrochromatography. Drying methods, crystallization methods. K_W03, K_U01 Scientific and technological information · Searching for information on the most abstracts and bibliographic important publishing houses (Chemical Abstracts) with the use of index Search for chemical information in scientific journals available on-line from the Rzeszów University of Technology library. K_W15, K_U06, K_K04 Social competences · Social and interpersonal competences as an ability to achieve social and individual goals while maintaining good relations with interaction partners • Components of social competences • Competencies determining the effectiveness of behavior in the situation of social exposure Strategies for image formation and self-presentation • Conditions of interpersonal skills and the importance of social competences • Improving skills and abilities relevant to social competences (assertive, cooperative, social, and social resourcefulness) • Developing and improving skills and abilities relevant to social competences (mutual understanding and getting to know each other, creating a climate of mutual trust, helping and influencing, solving problems and conflicts) • Developing and improving skills and abilities essential for social competences (communication skills assertive skills, skills to strengthen, sustain others, self-expression skills) • Developing and improving skills and abilities relevant to social competences - verbal and non-verbal communication • Improvement of the skills of beneficial self-presentation (especially in professional conditions) • The importance of social competences K_W01, K_W03, K_W14, K_U10, K_K01 Statistics and results elaboration • LIMS (Laboratory Information Management System) - selected problems. • Experimental database. Rejection outliers in data. Selective use of data • Exploratory data analysis of the analytical measurements, descriptive statistics, cross-sectional data, normality tests, statistical graphs. The frequency distribution of a variable. • Statistical hypothesis testing. Parametric and non-parametric tests. • Multiple regression. Study of correlation between variables. • One-way and multiple analysis of variance. Discriminant analysis, factor analysis and principal components analysis. • Fitting the observed variable distribution to a theoretical distribution. • Management of Statistica program data. Parameters of variable distribution • Study of empirical variable distribution. Statistical inference- nonparametric tests. • Statistical inference- parametric tests. • Analysis of the relationship between variables: linear and non-linear regression. • Analysis of Variance. Technical safety and ergonomics K_W13, K_W14, K_U12, K_K01, K_K02, K_K04 · Legislation in the field of labour protection, including the following: the rights and responsibilities of students and staff in the field of safety and liability for violation of safety rules and regulations, liability for accidents, the legislation concerning insurance benefits for safety violation and accidents at work. • Responsibilities of the university in the provision of safe and healthy learning environment: health and safety requirements for school buildings, the requirements for systems and equipment located in the building of the university. • Subject matter and scope of work safety and ergonomics. • Security in terms of the system (security as a management objective, as a legal obligation, a moral norm). • Models of accidents at work (the classic models of accidents, near misses models, modelling human behaviour in emergency situations). • Statistical and behavioural theories of safety. • Ergonomic aspects of the system human - machine - environment. • Assessment of the reliability of the systems: human computer, driver – car, pilot – airplane, as real cases of human – machine systems. • Methods for measuring the burden of dynamic physical labour and static physical labour. • The study of the burden of mental work. • Dangerous and harmful factors connected with work process and working conditions. • Risk assessment in a selected work position. • Ergonomics in the shaping of working conditions (some ergonomic principles and recommendations for the design of the spatial structure of the workplace, indication and control devices, technological processes, objects). Ergonomic factors in the organization of work. • Ergonomic assessment of machinery and equipment and improving working conditions. University rules of conduct in case of accidents and emergencies (fire, accident, etc.) pre-medical aid rules in the event of an accident, fire protection (including evacuation). K_W14, K_U03, K_U19, K_K02, K_K05 Toxicology · Introduction on the toxicology, definition of poison, intoxication, intoxication types, toxicity of chemical compounds, accumulation, persistence, way of introduction of poisons in the organisms. • Factors which influence of toxicity of poisons, synergisms and antagonisms. • Biotransformation of poisons in the organisms and degradation process of the poisons in the environment, elimination of poisons from organisms (pathway and biochemical mechanisms of elimination), etiology of intoxication, definition of abbreviation which will be used in the toxicology. • Prevention of the intoxication and basic therapy of intoxication REACH process – legislative in the European Union. • Risk assessment, definition of RA, identification of harmful substance, dose – response, exposition, risk characteristic, calculation of ADI (or RtD) and LD50, definition of abbreviation NOEL, NOAEL, NOEC, NOAEC, SF, UF, MF, ADI • Practical presentation of risk assessment of use of herbicide in the aquatic environment. Developmental toxicology, toxicology versus spermatogenesis, oogenesis and fertilization. Evaluation of toxic compounds on the embryo and developmental organism after birth to adulthood. • Toxicology of choice inorganic compounds (CO, CN-, NO2-, NH3, H2S, Cl2, PH3 ...). Toxicology of acids and hydroxide. • Toxicology of selected organic compounds. • Toxicology of selected heavy metals (Pb, Cd, Hg, Cu, As, Ba, Mg) • Toxicology of pesticides – divide of pesticides according to use in the agricultural practice, toxicology of selected pesticides according to chemical groups • Intoxications of selected drugs • Mycotoxins - characterization, toxicity, risk, divide by effect of the living organism • Poison plants - chemical compounds of toxic plants, divide toxic plants by effect of the living organism (by effect on the bodily organs) • Poisonous animals - chemical compounds of animal toxins, representative animal species. • General information about toxicology, diagnose of intoxication, sampling, packing and sending for chemical toxicology analysis • Determination of noxa in biological material without samples adjustment Determination of toxicologically important chemical compounds separable by water steam distillation • Determination of warfarine (kumarine) in the biological material • Determination of alkaloids in biological material by TLC method • Determination of drugs in the biological material by TLC method (salinomycín, monenzin, paracetamol) • Determination of herbicides MCPA and DNOK in the biological material programme content of elective modules K W05, K W12, K U06, K K01, K K07 Application of biotechnology in modern therapy · Biotechnology-derived drugs (biopharmaceuticals) and conventional medicines. • Animals as a living bioreactors. • Biotechnological methods for the production of human hormones. • Monoclonal antibodies - the use in the treatment of immunological diseases and cancer, and diagnostics.

Vaccines - types, potential for development. • Xenotransplantation - the directions of development. • Induced pluripotent stem cells. • Immunosuppressive drugs: modifications and applications. • Artificial skin. • Angiogenesis in vitro. • Diagnostic tests - RIA and ELISA • Nanoparticles in biomedical sciences. • Lecture credit.

Bioinorganic chemistry

K_W04, K_W05, K_U06, K_K01

• Metal coordination sites - their role in bioprocesses in biological systems. Porphyrin ligands and other macrocyclic systems. Transport and storage of transition metal ions. The formation constants of transition metals complexes and methods of their determination. Factors influencing for the potential of the metal complexes. Biological and synthetic molecular oxygen carriers. The transfer of electrons in biochemical reactions. The reactions of reactive oxygen species in biological systems. Heme proteins and copper proteins in redox reactions. Medical elements of inorganic chemistry, metals and their compounds in medicine (prevention, diagnostics)

Cell signalling

K_W05, K_U06, K_K01

• Introduction to the subject. Structure and function of membrane proteins. • General description of signal reception by cell membrane receptors. • Seven-helix receptors. • Receptor tyrosine kinases. • Cytokine receptors. • Receptor serine/threonine kinases. • Guanylyl cyclase receptors. • Tumor necrosis factor receptor family. • Notch receptors. • Hedgehog receptors. • Toll-like receptors. • Apoptosis and necrosis. • Genetic control of apoptosis. • Written qualification

English (A)

K U02, K U06, K U07

• Talking about yourself, famiy, home, likes and dislikes. Question forms. • Talking about important dates and events. Writing formal and informal emails. • Discussing differences between men and women. Expressing opinions. • Describing people. Revision of verb tenses: present and past simple, present and past continuous. • Talking about yourself. Conversation and interviews. • Giving advice on successful interviews. Talking about yourself. • Talking about films. Expressing opinion about films. • Talking about life experiences. Verb tenses: present perfect and past simple. • Talking about the media and news. Expressing opinion on conspiracy theories. Matching headlines with explanations. • Talking about stories from the past. Writing a news report. • Talking about lying. Collocations with 'say' and 'tell'. • Tellling a story or anecdote from the past. Listening to people telling anecdotes. • Phrases to describe a good/bad experience. Talking about memorable moments. Writing about one of your happiest memories. • Expressing opinions. Talking about problems of teenagers and their parents. • The future (plans): the present continuous, going to, will, might. Writing messages; learn to use note form. • The future (predictions): will, might, may, could, going to, likely to. Future time markers; idioms • Listening to predictions about the future of communication. Talking about how things will change in the future. • Reading a short story about a misunderstanding. Dealing with misunderstandings. Types of misunderstandings; phrases to clarify/ask someone to reformulate • Listening to a misunderstanding. • Reading an article about millionaires. Modals of obligation: must, have to, should. • Discussing the qualities needed for different jobs. Completing a survey and discussing the results. • Reading about childhood dreams. Reading job advertisements. Used to and would. • Listening to two people describing dream jobs gone wrong. Talking about childhood dreams. Reading job advertisements. Ose to and Business collocations. Phrases to give opinions, • Listening to people making decisions in a meeting. Learning to manage a discussion; Participating in a meeting and creating a business plan. • Office conversation; phrases to describe routines. Describing a day in your life. • Reading an article about how technology changed the world. Comparatives and superlatives. Vocabulary: technology. • Discussing how technology has changed the world. Talking about different types of transport and their uses. Writing an advantages versus disadvantages essay. Talking about future hopes and plans. Grammar: Future Perfect, Future Continuous. • Listening to people answering difficult general knowledge questions. Doing a short general knowledge questionnaire; answering questions on your area of expertise. • Polite requests. Problems and solutions. • Listening to conversations about technical problems. Learning to respond to requests. Role-playing asking and responding to requests. • Reading about basic emotions. Zero and first conditionals. -ing versus -ed adjectives; multi-word verbs with on, off, up and down • Listening to a radio programme about therapies. Talking about your emotions. Discussing what advice to give people in a variety of situations. • Second conditional. Verb-noun collocations • Discussing what you would do in different hypothetical situations. Writing a letter of advice. • Giving good and bad news. Life events. • Listening to conversations where people receive news. Learning to introduce and respond to news. Role-playing giving someone news • Phrases to describe a good/bad experience. Talk about memorable moments. Writing about one of your happiest memories. Reading a short introduction to The Secret of Success. Present perfect simple versus continuous. • Present and past modals of ability. Reading a biographical text about the memory men. • Listening to a three-way conversation about memory. Talking about your abilities. Writing a summary. Clarifying opinions. Reading a story about qualifications. • Listening to a discussion about intelligence. Learning to refer to what you said earlier. Choosing the right candidate for the job. Giving opinions and examples. • Reading a BBC blog about neighbours. Articles. Quantifiers • Describing your neighbourhood and discussing how it could be improved. • Relative clauses. Vocabulary connected with the internet. Reading a website review. • Listening to descriptions of online communities. Comparing real-world and online activities. Writing a website review. • Being a good guest. Welcoming. Reading about how to be a good guest. • Listening to people describing guest/host experiences. Learning to accept apologies Discussing problematic social situations. • Revision for the written examination. • Speaking practice - preparation for the oral examination.

English (B)

K_U02, K_U06, K_U07

• Flatmating, family, personality vocabulary, asking questions. Speaking, listening. • Vocabulary used in informal emails. Writing an informal email, checking accuracy • Feelings, gradable and ungradable adjectives, word formation. Reading, speaking, listening. Grammar: Present Perfect Advertisements. Making polite phone enquires. Reading, listening, speaking. • Writing a summary of a first encounter story • Social issues. Verbs and nouns with the same form. Grammar: Present Perfect • Preventing crime, surveillance. Giving solutions. Grammar: the Passive • Formal written language. Writing a letter of complaint. • Newspaper extracts. Expressing opinions. Opinion adjectives. Reading and speaking. • Discussing ingredients of happiness; carrying out a happiness survey. Writing tips for being happy for a website. • Games. Discussing behaviuor and annoying habits and routines. Grammar: would/used to Speaking. • Talking about leisure. Writing an opinion essey. Using linkers. • Talking about holidays. Grammar: Future forms, countable and uncountable nouns. • Describing procedures. Common actions in procedures. Talking about gameshows. Verbs. • talking about unusual experience. Recommending. Writing a story. • Reading a story. Sayings. Grammar: Past tenses. • Telling stories. Talking about experience from the past. Grammar: adverbs. • Wishes and regrets. Multi-word verbs. Grammar: wish/if only • Talking about reading habits, favourite books, likes and dislikes. Reading a summary. • Describing a favourite scene in a film. Writing a description of a favourite scene. Rading and talking about the worst inventions. Bicycles. Change. Compound nouns. Grammar: articles. • Discussing advertising tactics and the influence of advertising. Grammar: condictionals. • Marketing and advertising. Writing a report. Learning to make written comparisons. • Brainstorming ideas. Adjectives. Suggesting ideas. Showing reservation. • Presenting a new business idea. Writing: a product leaflet. • Talking about different ages. Word formation - nouns. Grammar: Modal verbs. • Talking about future hopes and plans. Grammar: Future Perfect, Future Continuous. • Writing a letter to your future self. Using linkers of purpose. • Collocations. Convincing. Asking for clarification. • Collocations. Living longer. Taking part in aclass debate. Writing: a forum comment. • Television. different kinds of TV programmes. Interesting facts about TV. Multi word verbs. Quantifiers. • Retelling real and made-up stories. Reading a questionaire. Grammar: reported speech. • Writing a discursive essay. Reading a newspaper article. Broadships and tabloids. Predicting. • Mistakes in press and TV. Re-telling a news story. Writing: a news article. Reading news stories about behaviour in tough situations. Collocations. Difficult decisions. Grammar: conditionals. • Feelings. A guiz on whether you're a morning or an evening person. Different attitude to time. Grammar: -ing form and infinitives. • Idioms connected to time. Writing an informal article. • Adjectives of manner. Talking about how to handle awkward situations. • Describing a family or cultural ritual. Writing about a Grammar: ing form and infinitives with different meanings. • Synonyms. Verbs with prepositions. Crimes. Grammar: modal verbs. • Reading an advice leaflet bout how to avoid trouble on holiday. Avoiding repetition. Writing a story about a lucky escape. • Reporting a crime. Solving problems. Rephrasing. • People in unusual situations. Survival items. Describing a dangerous adventure. • Professional language: mathematical symbols and terminology. Basic mathematical operations. • Professional language: Fractions, powers, logarithms. • Revision for the written examination. • Revision for the written examination. • Speaking practice - preparation for the oral examination. • Speaking practice - preparation for the oral examination.

French (A)

K_U02, K_U06, K_U07

• Interrogative pronouns (simple and complex inversion). • Trip around Paris; short advertisements - writing. • Describing events with the use of le passé composé tense. • Vocabulary related to describing the past. • Similarities and differences between Polish and French educational systems. Interpreting figures. • Presenting the university and the field of study. • Describing your last holidays - the use of l'imparfait and le passé composé tenses. • Direct object pronouns in various tenses and moods. • Indirect object pronouns in various tenses and moods. • Living in the city and in the country - advantages and disadvantages; comparatives and superlatives. • Real estate ads analysis; le conditionnel présent mood. • Possessive pronouns. • Hypothesizing and giving opinions; impersonal verb forms. • Describing things; the place of an adjective in a sentence. • Relative pronouns. • Vocabulary related to shopping; negotiating the price. • House chores; sharing duties with the family members. • Favourite dish - preparing a questionnaire; written comments on its results. • Outfits for various occassions; family celebrations. • "Dont" relative pronoun. • Giving personal opinion. • Means of transport - comparison. • A biography of a famous person; le plus-que –parfait tense. • The role of fashion in people's lives - presenting opinions. • Direct and indirect object pronouns COD/COI in the past tense. • The use of past participle with the subject and direct object. • Reported speech - positive sentences. • Car accident - expressing personal opinions. • The gérondif" mood as a way to express ismultaneity, manner, reason. • Entertainment ans free time activities. • Reported questions. • Complex relative pronouns. • Presenting the subject French region. • Active and passive voice. • A film review. • Newspaper article - the use of the passive voice. • Job advertisement, CV, cover letter - documents analysis. • Vocabulary and expressions used in administrative correspondence - writing a cover letter. • A job interview. •

Students' work, socializing and building a network of contacts. • The "subjonctif" mood - introduction. • Describing work experience. • Internet as the most popular medium. • Future tenses: le futur proche/ le futur simple; conditional "si+présent+futur simple". • Plans for the future. • Conditional « si+ imparfait+conditionnel présent ». • Expressing wishes. • Adverbs - the place in the sentence. • Private letter and reply to a private letter.

French (B)

K_U02, K_U06, K_U07

• Describing and reporting events in the past tense. • Paris - the center of fashion. • Pronouns COD/COI in various tenses. • Modern and dying professions. • A famous fashion designer - presentation. • Demonstrative and possessive substatival pronouns. • Simple and complex relative pronouns. • Jeans - a universal timeless outfit. • Complaints and solving problems, giving advice. • Expressing reason and result. • The "subjonctif" mood - expressing purpose. • Traffic regulations - obligations and prohibitions. • Reported questions. • Choosing profession, justyfiyng. • Expressing the reason. • Living in homeland and abroad, giving arguments. • National symbols of Poland and France. • "Le passé simple - literary tense". • Comparisons - various living styles, the comparative of irregular adjectives. • Real estate market in France and in Poland. • Expressing acquiescence. • Emigration and mobility, expressing opinions. • "Le savoir-vivre" - good manners. • What is proper and improper - similarities and differences concerning Polish and French customs. • Negatives - summary. • Expressing prohibition. • Expressing hypothesis. • Passive voice in a newspaper article. • Climate changes - vocabulary related to ecology. • People's eco-friendly habits. • Plans for the future - time expressions. • Pensioners nowadays and in the past; changes in perceiving elderly people. • Setting up a company - development plans. • Inventions which revolutionized people's lives. • Expressing the favourite character. • Passions in our lives. • Tense concordance in a short story. • Globalisation, positive and negative consequences. • Verb patterns with an infinitive. • Expressing disagreement towards proposals. • The art of giving arguments. • A mobile phone: hell or paradise? • Where does Europe end? - information about the European Union. • Verbs useful for giving arguments. • Arguments cohesion - coherence linkers. • Sentence transformations - expressing coherence. • Higher education - facts and expectations. • Presenting a selected company

Fundamentals of economics

K_W15, K_W16, K_W18, K_U11, K_U14, K_K06

· Introduction to Economics (outline of economic thought, the basic concepts, principles and assumptions of microeconomic analysis, the place of economics in the system of social sciences and relationships with other disciplines). Introduction to microeconomics. • The model of the market economy (institutions, productivity, efficiency, actors, resources and streams in the economic system, market - classifications and functioning). Demand (law of demand, exceptions, determinants, elasticity of demand), supply (the law of supply, exceptions, determinants, elasticity of demand), the balance of the market in the short, medium and long term, the impact of regulated prices on the market, model cobwebs. Consumer choice (the functioning of households, usability, first and second Gossen law, pension consumer Marshall, the balance of the consumer). • The rules of the enterprise (introduction to the theory of enterprise, basic definitions, classifications and processes). • The short run and long run production function in the market, economies of scale, choice of optimal technology. • The instruments of cost management in the enterprise, cost function in the long and short term, costs and liquidity. • Perfect competition and monopolistic competition. • Various degrees of competitiveness in the marketplace: monopolies, oligopolies • Introduction to macroeconomics, the basic phenomena and macroeconomic problems. • The development of economic systems, economic growth - measuring and conditions of the product and national income and its determinants, economic conditions (cycles) and the role of investment in the economy, analysis of the situation in Europe and the world. • The importance of the public finance sector, the organization SFP (sub), the impact of fiscal policy on national income, the role of the state in the economy, the budget as a tool for influencing the economy, the issue of budget deficit and public debt, the impact of public support (including EU funds) for the development of entities the national economy, analysis of the situation in Europe. • The development of the monetary system, the role of money in the economy, money in the strict sense and broad sense, the demand for money, the money supply and the mechanisms of its creation, quantitative theory of money, monetary aggregates. • The banking system of the state, the role of the central bank and monetary policy tools of monetary policy, the interbank market and the activities of commercial banks. • The phenomenon of inflation and its effects on social and economic demand and supply-side causes of inflation, the measurement of inflation - inflation, analysis of the situation in Europe, anti-inflation policy. • The labor market, employment policy, the importance of competence and demographic processes, labor market flexibility, unemployment as a problem of economic and social development. • International economic relations, the foreign exchange market, balance of payments, the single market of the European Union and its importance for the development of Member States, including developing countries. The European Union in the global economy.

Fundamentals of management

K_W15, K_W16, K_W18, K_U11, K_U14, K_K06

• Management as an academic discipline • Company and its environment as an object of management • Management features • Conterporary management problems. • State security management, internal and external security, ecological safety, microbiological safety, management of state security structures.

German (A)

K_U02, K_U06, K_U07

• New communication media. Establishing new contacts: Speed-dating. • Describing one's language skills - working with a video material. Declension of an adjective after definite, indefinite and no article. • Media competences, ability to creatively use internet assets in foreign language learning. Time adverbs. • Bisness meetings in a new environment, forms of greeting and introduction. • Strategies of learning language for special purposes. • Private and business meetings. Modal particles. • Planning and organizing official events. • Spoken and written invitations, establishing the date of the meeting. Rektion of the verb. Adverbial pronouns in questions and answers. • Working with a video material - 'Oktoberfest'. Planning and preparation of a presentation. • Business lunch. Quiz about etiquette. • Features of a good presentation. • Preparing product presentation. • Planning a holiday, travel bureau's offers. Assumptions - 'werden + wohl' verbs + infinitive. • Accommodation - hotel rating, opinions on internet sites. Relative sentences, relative pronouns. • Public transport in German speaking countries. • Future vehicles and travels. Future tense 'Futur I'. • Working with a video material - dream travels. • Organizing a conference, choosing a hotel, business mail. • Flat market, different forms of accommodation. Complex nouns. • Living community, student's house. Looking for a flat - advertisements. Time prepositions. • A student room, flat appliances, description of functions of furniture and items of every day use. • Switching flats during holiday. Word order. • Multi generation house. • Office and its equipment, positive rapport. • Living business community, pros and cons. • Presenting a profession - working with a video material. • Ideal work place. Conditionals. • Job advertisements, writing a cv. • Different ways of job searching. Advice and tips for job applicants. Sentences with 'damit' and 'um...zu'. • Job applications, talking about your education and work experience. • Small-talk, expressing opinion about one's job - pros and cons. • Famous composers, a biography note. Negative sentences. • Music genres, music instruments, music bands. • Festivals and concerts in German speaking countries. A schedule of musical events. • Planning a shared evening, inviting to a concert, writing a private email. • 'Rammstein' band - presenting a band. Providing argument support one's choice. Sentences with "denn", "weil", "nämlich", "deshalb". • German rock music - working with a video material. • Creating a presentation about German rock music. • Board games, tele shows. Rules of favourite games. Passive voice. • E-commerce, internet shops. • Psychology of selling, interpreting the behaviour of the customer. Passive voice with modal verbs. • Consumers' typical behaviour during shopping. Identification of different behaviour. • Online shopping discussion - pros and cons. • Vocabulary related to finances. • Acquisition of new skills, upgrading one's qualifications, various course offers and certificates. Noun's genitive. • Advanced ways of information searching, remote ways of providing education, education platforms. • Facilities found in a moder language lab. Prevoitions of place. • Education system in Germany - a discussion forum. • Technical occupations, handling and description of technical equipment, manuals. Prepositions with dative and accusative. • Malfunctions and technical faults. Imperative. • Complaints - exchaning emails.

German A

K_U02, K_U06, K_U07

• Friendship, meetings, people relationships, relations. Declension - type 'n'. • Describing a person, introductions, characteristics of types of behaviour, features of character. • Presenting one's characteristic. Noun formation. • Reder's magazine - class reunions and locating classmates by internet. Working with a text. • Occupation and work, workplace, presenting one's flaws and strengths. • Talking about the past. Past tense (Präteritum) of regular, irregular and mixed nouns. • Report concerning the internship done. Presenting opinions regarding an employee. • Conditions and forms of work. Requirements and competences. • Working with a video material. Conducted activities and working conditions. • Presenting one's plans and professional plans. • Living conditions, an interview with a real estate agent. Relative pronouns and relative clauses. • Analysis of offers and notices, explaining abbrevations. Adverbials of time. • Living in Germany: informational text, statistics, graphs. • Customer service, phone conversations. Language reactions based on a given situation. • Oral and written complaint. Sentences with "obwohl" and "trotzdem" • Writing a formal letter with a set of fixed phrases. • Iniviting to a company promotional meeting - working with a text. • Computerisation of everyday life. Functions of devices/appliances used nowadays and in the future. • Visions of technological progress of the future. Futur I tense. • Using electronic devices in private and professional life - presentation. • Working with a video material - history and development of an enterprise,

features of products and their distribution. • Formal and informal invitation. Conditional conjunction "falls". • Business meeting. Rules of participating in a meal and different professional and social situations. • Holiday plans, expressing wishes and intentions. Verbs: 'sollen'. • Media, Germany's press market. • Characteristics of a given magazine - presentation. • Shopping, slecting products, reacting to suggestions and propositions. Sentences with 'zu' before an infinitive. • Conversation between a client and consultant. Typical expressions. • Conversations between a client and consultant. Using typical professional expressions. Setting up a company and customer acquistion. • Choosing a profession. Determining one's own skills and abilities. Causative clauses. • Social competences and career choice test. Employment profiles. Time clauses with 'bevor' and 'während' conjunctions. • Describing personality and aptitudes, expressing opinions and presenting test results. • Miniproject - professional predispositions, weak and strong sides of a candidate, talking with a careers adviser. • Working with a video material - history and development of Hueber publishing house, as well as its products. • Working conditions and concept of an employee-friendly enterprise. Gradation and declension of an adjective. • European Union - employments in favour and against, expressing opinions. Imperative. • Presentation structure, template, typical expressions. • Conditions determining good employment and company's attractiveness. • Wasted chances and opportunities. Unreal clauses in the past. • Reporting experienced failures - a radio audition. Conditional clauses - Konjunktiv II. • Helpline - describing a given situation. 'Ware / hätte' structures + Partizip II. • Describing controversial events - discussion and commentary. • Expressing disappointment and reacting to it - writing an e-mail, working with a text published on a blog. • Everyday situations that make you happy. Plusquamperfekt tense. • Expressing emotions - languag

Molecular taxonomy

K_W12, K_U06, K_K01

• Evolutionary biology. Classification and phylogeny. Mechanisms and the way of evolution. The formation of genetic variation. Genetic variation in natural populations. The evolution of phenotypic traits. Species and speciation. • The evolution of proteins, genes and genomes. Applications of molecular phylogenetics

Remediation of toxic substances in environmental material K_W07

• Geochemical cycle. Soil as the ecological environment. Emission of industrial pollution to the environment. Pollution of geochemical cycle (asbestos, chromium(VI), lead, mercury, cadmium, synthetic organic compounds, dioxins, DDT and derivative of compounds, PCB, PAH. Protecting the environment from production of biotech and chemical industries. Basics of post-production waste and biotechnological aspects of environmental protection. Physical and chemical properties of soils. Soil organic matter. The content of organic carbon (humus) in the soil. Macro and micro-organisms in the soil environment. Oxidation-reduction properties of the soil. Sorption capacity of the soil. Distribution of soils in Poland, according to the state of emergency. Protection of soil. Remediation and bioremediation. Physicochemical methods of remediation. Biological methods of remediation. Microorganisms and their use in the process of rehabilitation of degraded soils. Biodegradation as a method of purifying contaminated soil petroleum products. Phytoremediation. Landfarming. Reclamation of degraded soils. Degradation of soils and their resistance to degradation. Eco-technical tasks in the field of protection and restoration of soil.

Russian (A)

K_U02, K_U06, K_U07

• Healthy diet. • Wedding customs in Poland and Russia. • Family holidays. Sentences with a, и, но, или. • Leisure time. Writing a short play/movie review. • Mass media. Expressing opinion about mass media and their role. • Internet or newspapers. Demonstrative pronouns этот, эта, это, тот, та, то, те. Using пользоваться (чем?) verb. • Disabled are among us. Vocabulary and constructios connected with the topic of disabled. • Popular occupations. Male and female noun forms of different occupations. Negative proniuns никто, ничто, некто, нечто, никогда, некуда, некуда. • Professional duties. Vocabulary related to activities coonducted in popular jobs. • Job interview. Giving advice concerning job selection and preparation for job interview. • Moscow labour market. Describing pros and cons of certain occupations. Writing a job application. Working abroad - pros and cons. • Material revision. Talking about the plans after graduation. • Studying in Poland. Names of different universities; popular abbrevations. Vocabulary related to formalities and conditions that have to be met to study. • Studying in Russia. Abbrevations of universities and faculties, Supporting the choice of studies. Writing an email and private letter. • Student life. стать/быть/ работать (кем?) construction, быть по профессии/по образованию (кем?) construction and несмотря на то,что construction. • Excursions. Describing/planning and narrating excursions. Writing questions regarding holiday offers. • Summer camps. Tourist equipment. Travelling by train. nyth noun. • Tourist office. Writing excursion advertising leaflets. Writing a letter of complaint. • Tourism in Poland. Accommodation base - vocabulary. Describing excusrions and sight-seeing. • Tiurism in Russia. Full meaning of турбюро, турбаза, ж/д abbrevations. заказать, забронировать verbs. • Renting a flat for summer. Vocabulary and constructions used in flat-renting advertisements. снимать, снять, сдать в аренду verbs. • Real estate agency Describing appearance of rooms and their facilities based on illustrations. • House or flat? Where to live? Subjectless sentences. • Material review Names of tourist equipment. vocabulary and constructions used when describing a flat. • Writing e-mails. Writing a private letter concerning an unfortunate journey. Vocabulary related to private letters. • Our neighbours. Participles: usage and creation. • Our planet Earth. Describing and proposing different ecological actions. Presenting data concerning biodegredation of different common-use products. • Protect nature. Conducting a survey related to pro-ecological behaviour. Writing an essay about environmental danges. • Natural disasters. Describing climate and weather. Vocabulary - natural disasters. • Ecological crisis. Describing climate and weather. Vocabulary - natural disasters. • Cataclisms. Describing activities related to acting in case of cataclisms. Superlative forms. • World of technologies. Talking about scientific inventions and technical novelties. Technical language. • 21st century inventions. Describing information technologies. Describing malfunctions. Vocabulary related to computer and internet. • Technology and us. Naming and describing inventions. Expressing opinions. • We are all equal. Creating utterances about the social roles of men and women. Expressing opinions about partnership. Vocabulary and constructions related to equality and social roles of men and women. • Generation gap. Expressing opinions about generation gap and discussion about the validity of some bans. • Juvenile subcultures. запрещать, запретить verbs. каждый, всякий, любой relative pronouns. • Important dates in our life. Describing dates and events Complex quantifiers. • Products and services. Reading comprehension. Dialogues concerning malfunctions and repairs of every day objects. Advertisement's effect on a human. Describing activites related to advertisements. Naming and describing services. • E-commerce. Talking about e-commerce. Accusative of plural living and non-living nouns. • War. Expressing opinions about war service and women participation: discussion. Vocabulary related to war service, conflicts and inner and international problems. • Citizen debt. Reading comprehension. Imperatives: Будь я президентом, не было бы такого!. • Social problems. Naming and describing selected social problems and proposing their solutions. Vocabulary related to selected social problems. • Human and society. Conducting a debate abour homelesness and means of fighting it. Time constructions with prepositions: 3a and vepes. • Master and Margaret. Discussing the text. Knowledge about Russia: life and work of Michael Bulhakow. • Slavian mythology. Read comprehension. • Russian painting. Reading comprehension: text about Russian painters. • Russian Federation. Vocabulary related to both the structure, as well as political ststem of Russian Federation. • Russia today. Reading comprehension concerning structure and political system of Russian Federation. • Poland in Europe. Reading comprehension concerning structure and political system of Poland.

Russian (B)

K_U02, K_U06, K_U07

• Appearance. • Features of character. • Asking for personal details. Processing and transferring information. • Ethical problems. Personal prononus with or without preposition. • Home products. Present tense. • Real estate, Nouns. • House renovations. Adjectives. • School requirements. Verbs: учить, учиться, изучать. • Systems of educations in Poland and Russia. • School requirements. Prepositions в, на. • Occupations. Verbs related to different occupations. • Professional work. Temporary work. Labour market. Present tense. • Our portfolio. Writing a letter of motivation. Writing a CV. Nouns. • Family holidays. Naming holidays. Possesive pronouns. • Family members. Leisure time and reflexive verbs. • People and relationships. Adverbs of place and direction. • Food and its names. • Restaurants. Numerals 1,2,3,4 in junction with nouns and adjectives. • Describing diets. Expressing opinions. Demonstrative pronouns. Imperative. • Services: buying and saling. Verbs: кулить/покупать. • Bank (types of payment). Main numerals. Nouns: pyбnь. • Products. Advertisements. Adverbs of level and measurement. • Means of transport in Russia. Interesting places in Russia. • Travelling vocabulary. Naming and describing accommodation. Nouns ending -ий -ия, -ue. • Describing excursions and sight-seeing. Expressing opinions. Writing a blog. • Art genres (movies). Cinema genres. • Mass media. Present tenses. • Sport disciplines. Sport venues. • Sport equipment. Comparatives. • Sport competitions. Nouns with adjectives. • Describing one's well-being. Ilnesses and means of curing them. • Curing and healing processes. Prepositions in constructions related to time and direction. • Addiction. Imperative. • Naming basic technical devices. Activities made with basic technical devices. • Catastrophies and natural disasters. Adjectives. • Catastrophies and natural disasters. • Adjectives. • Catastrophies and natural disasters. • Social life. ceбя pronoun. Apyr Apyra expression. •

Social problems. Vocabulary related to current social issues. • Master and Margaret. Reading comprehension. Life and work of Michael Bulhakow. • Mythology. Selected information concerning Slavian mythology. • Wasilij Kandinskij. Reading comprehension. • Iwan Szukszyn. Reading comprehension. • Russian fables. Nouns with adjectives. • Russian holidays. Naming and describing holidays. • Polish holidays. Naming and describing holidays.

3.3. Applied biochemistry, past time

3.3.1. Parameters of the study plan

The total number of ECTS credits that a student must obtain in the course of classes conducted with direct participation of academic teachers or other persons conducting classes.	80 ECTS
The total number of ECTS credits allocated to classes related to scientific activity conducted at the university in a given discipline or disciplines to which the course of study is assigned.	124 ECTS
The total number of ECTS credits required to be obtained by a student in the humanities or social sciences for the courses of study assigned to disciplines within the fields of study other than the humanities or social sciences respectively.	5 ECTS
The total number of ECTS credits allocated to elective courses.	63 ECTS
Total number of ECTS credits allocated to work placements, internships (if the study program includes work placements or internships).	4 ECTS
Hours of apprenticeships, internships (if the study program provides for internships or apprenticeships).	160 h.
The total number of ECTS points that a student must obtain as part of a foreign language course.	9 ECTS
Number of hours of physical education classes.	36 h.

Detailed information about:

- 1. the relationship between learning outcomes and modular learning outcomes;
- key learning outcomes in terms of knowledge, skills and social competences, demonstrating their relation to the discipline / disciplines to which the course is assigned;
- 3. the development of learning outcomes at the level of classes or group of classes, in particular related to the scientific activity conducted at the university;
- 4. learning outcomes in terms of knowledge, skills and social competences leading to the acquisition of engineering competences, in the case of study programmes on completion of which the student is awarded a professional title of engineer / Master of Engineering;

can be found in the Module Activity Sheets, available at the following URL: http://krk.prz.edu.pl/plany.pl?lng=EN&W=C&K=H&TK=html&S=1538&C=2020, which are an integral part of the study programme.

Semester	Org.Unit	name of the subject	Lecture	Class	Laboratory	Project/ Seminar	Sum of hours	ECTS	Exam	Mand.
1	ZH	Technical safety and ergonomics	9	0	0	0	9	1	Ν	
1	СВ	Cell biology	9	0	0	0	9	2	Ν	
1	CN	General and inorganic chemistry	18	18	0	0	36	6	Т	
1	ZM	Academic savoir-vivre	6	0	0	0	6	1	Ν	
1	FF	Physics	18	18	0	0	36	6	т	
1	CB	Genetics	18	9	0	0	27	4	Ν	
1	ZM	Social competences	6	9	0	0	15	2	Ν	
1	FM	Mathematics	18	18	0	0	36	6	Т	
1	ZE	Economic course	18	0	0	0	18	2	Ν	
Sums for t	he semest	er: 1	120	72	0	0	192	30	3	4
2	СВ	Cell biology	9	0	18	0	27	4	Т	
2	CN	General and inorganic chemistry	18	9	27	0	54	7	Т	
2	FF	Physics	9	9	9	0	27	4	т	
2	CI	Engineering graphics	9	0	18	0	27	4	Ν	
2	FM	Mathematics	18	18	0	0	36	6	т	
2	CX	Packages of application software	0	0	18	0	18	2	Ν	
2	CB	Computer science	9	0	18	0	27	3	Ν	
Sums for t	he semest	er: 2	72	36	108	0	216	30	4	4
3	CI	Chemical and biotechnological equipment	18	9	9	0	36	4	Ν	
3	CS	Biochemistry	9	0	18	0	27	3	Т	
3	CM	Biophysics	9	0	0	0	9	1	Ν	
3	CC	Bioinformatics	9	0	9	0	18	2	Ν	
3	CN	Analytical chemistry	9	0	18	0	27	3	Ν	
3	CF	Physical chemistry	18	9	0	0	27	4	Т	
3	СМ	Organic Chemistry	18	9	0	0	27	4	Т	

3.3.2. Plan of study

3 CB General microbiology 18 0 18 0 36 5 N 3 DL Physical education 0 10 0 0 18 0 28 N 3 DL Physical education 0 117 63 81 0 28 30 N 4 CS Biochemistry 18 9 18 0 48 6 T 4 CF Physical chemistry 18 9 16 0 45 6 T 4 CF Physical chemistry 18 0 11 0 45 0 N 4 CB Soentific and technological information 0 18 0 18 0 18 0 18 0 18 1 N 4 DL Physical education 0 18 0 <td< th=""><th>3</th><th>DJ</th><th>Foreign language</th><th>0</th><th>18</th><th>0</th><th>0</th><th>18</th><th>2</th><th>Ν</th><th></th></td<>	3	DJ	Foreign language	0	18	0	0	18	2	Ν	
3 CE Statistics and results allocation 9 0 18 0 10 18 0 10 18 0 10 18 0 10 10 10 10 10 10 10 10 10 10 <	3	СВ	General microbiology	18	0	18	0	36	5	Т	
3 DL Physical education 0 18 0 0 18 0 261 30 A 3ums for the semester: 3 117 63 61 0 261 30 A 4 4 CS Biochemisty 18 0 18 0 36 5 T 4 4 CS Biochemisty 18 0 18 0 45 6 T 4 4 CB Scientific and lechnological information 0 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 10 18 10 10 10 10 10 10 10 10 10 10	3	СВ	Statistics and results elaboration	9	0	9	0	18	2	Ν	
Sume for Hysenester J11763610026120444CFPhysical chemistry180180180456114CHPhysical chemistry180180456744CKPhysical chemistry180180456744CKPregin language00181018018018<	3	DL	Physical education	0	18	0	0	18	0	Ν	
4 CS Biochemistry 18 0 18 0 36 5 T 4 4 CF Physical chemistry 18 0 18 0 45 6 T 4 4 CF Physical chemistry 18 0 18 0 18 0 18 2 N 4 4 CB Scientific and technological information 0 18 0 18 0 18 2 N 4 4 CB Invitro cultures 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 2 N 4 4 DL Physical education 0 0 0 0 18 2 N 4 0 18 2 N 4 18 0 18 0 18	Sums for t	he semest	ter: 3	117	63	81	0	261	30	4	4
4 CS Biochemistry 18 0 18 0 36 5 T 1 4 CF Prysical chemistry 18 9 18 0 45 6 T 1 4 CM Organic Chemistry 18 9 18 0 45 6 T 1 4 CM Scientific antichnological information 0 18 0 18 0 18 2 N 1 4 CM Invitro cultures 9 0 18 0 18 0 36 4 N 4 CM Biometerials processing 18 0 18 0 0 18 2 N 5 CF Instrumental analysis 18 0 27 0 45 5 N 1 5 CR Persit biochemistry 9 0 18 0 2 N 1 5 CR Instrumental analysis 18 0 18 0 18 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td>							•				
4 CF Physical chamistry 18 9 18 0 45 6 T 4 4 CM Organic Chemistry 18 9 18 0 45 6 T 4 4 CB Scientific and technological information 0 18 0 18 0 18 2 N 4 CB Invitico cultures 9 0 9 0 18 2 N 4 CM Information incology 18 0 18 0 36 5 N 4 CM Biomaterial snotesing 18 0 18 0 18 2 N 4 5 CB Manuestrial analysis 18 0 27 4 5 N 4 18 0 18 2 N 4 5 CB Manuestrial analysis 18 0 18 0 18 0 18<	4	CS	Biochemistry	18	0	18	0	36	5	Т	
4 CM Organic Chemistry 18 0 18 0 18 0 45 6 T 1 4 CB Scientific and technological information 0 0 1 0 18 2 N 1 4 CB Invitro cultures 9 0 18 0 18 0 18 2 N 1 4 CB Invitro cultures 9 0 18 0 18 0 18 0 18 0 N 1 4 CM Biomaterials processing 18 0 18 0 0 18 0 N 1 5 CF Instrumental analysis 18 0 9 0 18 2 N 1 5 CB Molecular biochemistry 9 0 9 0 18 2 N 1 5 CB Molecular biochemistry 9 0 9 0 18 2 N 1 5 C	4	CF	Physical chemistry	18	9	18	0	45	6	Т	
4 CB Scientific and technological information 0 1 0 1 0 N 4 DD Prorigin language 0 18 0 0 18 2 N Image: Constraint incrobiology 4 CS Industrial microbiology 18 0 18 0 36 4 N 4 CS Industrial microbiology 18 0 18 0 36 4 N 4 CS Industrial microbiology 18 0 18 0 18 0 18 0 18 0 N N Sums for the semester.4 99 54 100 0 18 2 N N 5 CF Instrumental analysis 18 0 27 3 N Image: Construct analysis 18 0 0 18 2 N Image: Construct analysis 18 0 0 18 2 N Image: Construct analysis 18 0 0 18 2 N Image: Constanananalysis	4	СМ	Organic Chemistry	18	9	18	0	45	6	Т	
4 DJ Foreign language 0 18 0 0 18 2 N ■ 4 CS Industrial incobology 18 0 18 0 38 4 N 4 CS Industrial incobology 18 0 18 0 38 4 N 4 CK Biomaterials processing 18 0 18 0 38 4 N 5 CF Instrumental analysia 18 0 27 0 45 5 N 5 CF Instrumental analysia 18 0 27 0 45 5 N 1 5 CS Plant biochemistry 9 0 9 0 18 22 N 1 5 CS Industrial analysia 18 0 18 2 N 1 5 CS Industrial analysia 18 0 18 2 N 1 5 CS Industrial analysia 18 0	4	СВ	Scientific and technological information	0	0	1	0	1	0	Ν	
4 CS invito cultures 9 0 9 0 18 0 18 0 18 0 18 0 18 0 18 0 36 5 T 1 4 CM Biomaterials processing 18 0 18 0 36 5 T 1 4 DL Physical education 0 18 0 27 0 45 5 N 1 5 CF Instrumental analysis 18 0 27 0 45 5 N 1 5 CB Molecular biology 18 0 18 2 N 1 5 CB Molecular biology 18 0 18 0 18 2 N 1 5 CB Analytical methods in biochemistry 9 0 9 0 18 2 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	DJ	Foreign language	0	18	0	0	18	2	Ν	
4 CS Industrial microbiology 18 0 18 0 36 5 T 4 CM Biomaterials processing 18 0 18 0 36 4 N Sums for the semester: 4 99 54 100 0 253 30 4 4 5 CF Instrumental analysis 18 0 27 0 45 5 N 5 CF Instrumental analysis 18 0 27 0 45 5 N 5 CF Instrumental analysis 18 0 18 0 36 5 T 7 5 CB Molecular biology 18 0 9 0 18 2 N 7 5 CJ Bioprocess Engineering 18 9 0 0 18 2 N 7 5 CJ Bioprocess modeling 9 0 9 9 24 N 7 5 CJ Bioprocess modeling	4	СВ	In vitro cultures	9	0	9	0	18	2	Ν	
4 CM Biomaterials processing 18 0 18 0 36 4 N 3ums for the senseter. 4 99 54 100 0 283 0 4 N 5 CF Instrumental analysis 18 0 27 0 45 5 N 5 CF Instrumental analysis 18 0 27 0 45 5 N 5 CF Instrumental analysis 18 0 27 0 45 5 N 5 CB Piont biochemistry 9 0 9 0 18 2 N 1 5 CS Analytical methods in biochemistry 9 0 9 0 18 3 1 5 CF Biomolecular process modeling 9 0 9 0 18 3 3 1 5 CF Biomolecular biochemistry 9 0 9 0 18 2 N 1 6 CS Forensic	4	CS	Industrial microbiology	18	0	18	0	36	5	Т	
4 DL Physical education 0 18 0 0 18 0 0 18 0 0 18 0 0 18 0 0 18 0 0 18 0 233 30 4 4 S CF Instrumental analysis 18 0 27 0 45 5 N - 5 CB Plant biochemistry 9 0 9 0 18 2 N - 5 CB Chemistry forosmetics 9 0 9 0 18 2 N - 5 CI Biornocess Engineering 18 9 0 9 0 18 2 N - 5 CJ Analytical methods in biochemistry 9 0 9 0 18 2 N - 5 CB Immunological techniques in biotechnology 9 0 9 0	4	СМ	Biomaterials processing	18	0	18	0	36	4	Ν	
Sums for the semester: 4 99 54 100 0 253 30 4 4 5 CF Instrumental analysis 18 0 277 0 45 5 0 5 CB Plant biochemistry 9 0 9 0 18 20 18 2 N - 5 CB Molecular biology 18 0 18 0 9 0 18 2 N - 5 CS Analytical methods in biochemistry 9 0 18 0 18 0 18 3 17 5 CF Biomolecular process modeling 9 0 19 0 18 3 10 12 N - 5 CF Biomolecular process modeling 9 0 9 0 18 2 N - 5 CS Forensic biochemistry 9 0 9	4	DL	Physical education	0	18	0	0	18	0	Ν	
5 CF Instrumental analysis 18 0 27 0 45 5 N 5 CB Plant blochemistry 9 0 9 0 18 2 N 5 CB Molecular blocky 18 0 18 0 36 5 T Image: Comparison of the second of th	Sums for t	he semest	er: 4	99	54	100	0	253	30	4	4
5 CF Instrumental analysis 18 0 27 0 45 5 N 5 CB Plant biochemistry 9 0 9 0 18 2 N 5 CB Molecular biology 18 0 18 0 36 5 T Image: Comparison of the comparison								1			
5 CB Plant blochemistry 9 0 9 0 18 0 18 0 18 0 18 0 18 0 36 5 T 7 5 CS Chemistry of cosmetics 9 0 9 0 9 0 18 2 N 7 5 CS Chemistry of cosmetics 9 0 9 0 0 27 3 N 7 5 CS Analytical methods in biochemistry 9 0 9 0 18 2 N 7 5 CS Insmunological techniques in biotechnology 18 0 18 0 36 4 N Sums for the semester: 5 108 27 99 9 0 18 2 N 7 6 CS Forensic biochemistry 9 0 9 0 18 2 N 7 6 CS Biodegradable biopolymers and polymers 9 0 9 0 18 2	5	CF	Instrumental analysis	18	0	27	0	45	5	Ν	
5 CB Molecular biology 18 0 18 0 36 5 T I 5 CS Chemistry of cosmetics 9 0 9 0 18 2 N 5 CI Bioprocess Engineering 18 9 0 0 27 3 N I 5 CS Analytical methods in biochemistry 9 0 9 0 18 3 T I 5 CF Biomolecular process modeling 9 0 9 9 27 4 N 5 CF Biomolecular biology 18 0 18 0 36 4 N 5 CF Biomolecular biology 18 0 18 0 30 2 N 6 CS Forensic biochemistry 9 0 9 0 18 2 N 6 CS Indiopoly opiofueris and polymers and polymers	5	CB	Plant biochemistry	9	0	9	0	18	2	N	
5 CS Chemistry of cosmetics 9 0 9 0 18 2 N 5 CI Bioprocess Engineering 18 9 0 9 0 18 2 N 1 5 DJ Foreign language 0 18 0 0 18 2 N 1 5 CS Analytical methods in biochemistry 9 0 9 9 27 4 N 5 CF Biomolecular process modeling 9 0 9 9 27 4 N 5 CB Immunological techniques in biotechnology 18 0 18 2 N 1 6 CS Forensic biochemistry 9 0 9 0 18 2 N 1 6 CS Biodegradable biopolymers and polymers 9 0 9 0 18 2 N 1 6 CB Enersymology 9 0 18 0 27 3 T 1	5	CB	Molecular biology	18	0	18	0	36	5	т	
5 C3 Number of mean and the set of the set	5	02	Chemistry of cosmetics	۰. ۵	0	 Q	0	18	2	N	
S Cir Doprocess Engineering 10 a 0 0 21 23 14 14 5 DJ Foreign language 0 18 0 0 18 2 N Image 5 DJ Foreign language 0 18 0 9 0 9 9 27 4 N Image 5 CF Biomolecular process modeling 9 0 9 9 243 30 2 3 6 CS Foreign language 9 0 9 0 18 0 36 4 N 5 CB Immunological techniques in biotechnology 18 0 18 0 18 2 N Image 6 CS Biodegradable bioplymers and polymers 9 0 9 0 18 2 N Image 18 2 N Image 18 0 18 2 N Image 18 0 18 2 N Image 16 CB <td>5</td> <td>00</td> <td>Bioprocess Engineering</td> <td>18</td> <td>0</td> <td>0</td> <td>0</td> <td>27</td> <td>2</td> <td>N</td> <td></td>	5	00	Bioprocess Engineering	18	0	0	0	27	2	N	
S DJ Foreign anguage O 18 O 0 0 18 2 N - 5 CS Analytical methods in biochemistry 9 0 9 9 0 18 3 T - 5 CF Biomolecular process modeling 9 0 18 0 36 4 N - Sums for the semester: 5 108 27 99 9 243 30 2 3 6 CS Forensic biochemistry 9 0 9 0 18 2 N - 6 CS Biodegradable biopolymers and polymers 9 0 9 0 18 2 N - 6 CS Biodegradable biopolymers and polymers 9 0 9 0 18 2 N - 6 CS Chemistry and technology of biofuels 9 0 18 0 27 3 T - 6 CB Exprenology 9 0 18 0<	5			10	3	0	0	27	3	N	
S CS Analytical memodes in blockennisity 9 0 9 9 0 18 3 1 5 CF Biomolecular process modeling 9 0 9 9 27 4 N 5 CB Immunological techniques in biotechnology 18 0 18 0 36 4 N Sums for the semester: 5 108 27 99 9 243 30 2 3 6 CS Forensic biochemistry 9 0 9 0 18 2 N - 6 CS Biodegradable bioplymers and polymers 9 0 9 0 18 2 N - 6 CS Chemistry and technology of biofuels 9 0 9 0 18 2 N - 6 CB Protein engineering 18 0 18 0 27 4 N - 6 CB Genetic engineering 9 9 9 0 18 2 N </td <td>5</td> <td>DJ</td> <td>Foreign language</td> <td>0</td> <td>18</td> <td>0</td> <td>0</td> <td>18</td> <td>2</td> <td>N T</td> <td>-</td>	5	DJ	Foreign language	0	18	0	0	18	2	N T	-
S CF Biomolecular process modeling 9 0 9 27 4 N 5 CB Immunological techniques in biotechnology 18 0 18 0 36 4 N S 108 27 99 9 243 30 2 3 6 CS Forensic biochemistry 9 0 9 0 18 2 N - 6 CS Biodegradable bioplymers and polymers 9 0 9 0 18 2 N - 6 CS Biodegradable bioplymers and polymers 9 0 9 0 18 2 N - 6 CS Chemistry and technology of biofuels 9 0 18 0 27 4 N - 6 CB Enzymology 9 0 18 0 9 27 4 N - - 6	5	CS CS	Analytical methods in biochemistry	9	0	9	0	18	3	I N	
Sums for the semester: 5 100 bit of the semester: 6 100 bit of the semester: 6 100 bit of the semester: 7 1	5		Biomolecular process modeling	9 10	0	9 10	9	27	4	N	
Sums for the semester: 5 108 27 99 9 243 30 2 3 6 CS Forensic biochemistry 9 0 9 0 18 2 N Image: constraint of the semester in	0			10	0	10	0	30	4	N 0	-
6 CS Forensic biochemistry 9 0 9 0 9 0 18 2 N 6 CB Molecular biology 9 0 9 0 9 0 18 2 N Image: construction of the second of	Sums for t	ne semesi		100	21	33	9	243	30	_	3
6 CB Molecular biology 9 0 9 0 9 0 18 2 N Image: constraint of the semester: consthe semester: constraint of the semester: consthe semester								1			
6 CS Biodegradable biopolymers and polymers 9 0 9 0 18 2 N 6 CI Bioreactors 9 0 9 0 18 2 N 6 CS Chemistry and technology of biofuels 9 0 9 0 18 2 N 6 CS Chemistry and technology of biofuels 9 0 18 0 27 2 T 6 CB Enzymology 9 0 18 0 27 3 T Image: Construction of the second	6	CS	Forensic biochemistry	9	0	9	0	18	2	N	
6 Cl Bioreactors 9 0 9 0 18 2 N 6 CS Chemistry and technology of biofuels 9 0 9 0 18 2 N 6 CS Chemistry and technology of biofuels 9 0 18 0 27 2 T 6 CB Enzymology 9 0 18 0 27 2 T 6 CB Protein engineering 18 0 0 9 27 4 N 6 CB Genetic engineering 18 0 18 0 36 3 T 6 CB Genetic engineering 18 0 18 0 9 1 N 6 CB Conjuter-aided research 0 0 9 0 27 4 N Sums for the semester: 6 117 27 108 9 261 30	6	CS CB	Forensic biochemistry Molecular biology	9	0	9	0	18 18	2	N	
6 CS Chemistry and technology of biofuels 9 0 9 0 18 2 N 6 CB Enzymology 9 0 18 0 27 2 T 6 CB Protein engineering 18 0 0 9 27 4 N 6 CB Bioprocess Engineering 9 9 9 0 27 3 T I 6 CB Genetic engineering 18 0 18 0 36 3 T I 6 CB Genetic engineering 18 0 18 0 36 3 T I 6 CB Computer-aided research 0 0 9 0 9 1 N 6 CB Toxicology 18 0 9 0 18 2 N 7 CS Biocatalysis 9 0 9	6 6 6	CS CB CS	Forensic biochemistry Molecular biology Biodegradable biopolymers and polymers	9 9 9	0 0	9 9 9	0 0 0	18 18 18	2 2 2	N N N	-
6 CB Enzymology 9 0 18 0 27 2 T 6 CB Protein engineering 18 0 0 9 27 4 N 6 CI Bioprocess Engineering 9 9 9 0 27 3 T Image: Comparison of the process Engineering 6 CB Genetic engineering 18 0 18 0 36 3 T Image: Comparison of the process Engineering 18 0 18 0 36 3 T Image: Comparison of the process Engineering 18 0 18 0 36 3 T Image: Comparison of the process Engineering 18 0 18 0 18 3 T Image: Comparison of the process Engineering 117 27 108 9 261 30 4 3 6 CB Toxicology 117 27 108 9 261 30 4 3 7 CS Biocatalysis 9 0 9 0 18 <t< td=""><td>6 6 6 6</td><td>CS CB CS CI</td><td>Forensic biochemistry Molecular biology Biodegradable biopolymers and polymers Bioreactors</td><td>9 9 9 9</td><td>0 0 0</td><td>9 9 9 9</td><td>0 0 0</td><td>18 18 18 18</td><td>2 2 2 2</td><td>N N N</td><td>4</td></t<>	6 6 6 6	CS CB CS CI	Forensic biochemistry Molecular biology Biodegradable biopolymers and polymers Bioreactors	9 9 9 9	0 0 0	9 9 9 9	0 0 0	18 18 18 18	2 2 2 2	N N N	4
6 CB Protein engineering 18 0 0 9 27 4 N 6 C1 Bioprocess Engineering 9 9 9 0 27 3 T Image: Computer And Comput	6 6 6 6	CS CB CS CI CS	Forensic biochemistry Molecular biology Biodegradable biopolymers and polymers Bioreactors Chemistry and technology of biofuels	9 9 9 9 9 9	0 0 0 0 0	9 9 9 9 9	0 0 0 0 0	18 18 18 18 18 18	2 2 2 2 2 2	N N N N N	-
6ClBioprocess Engineering99990273TI6CBGenetic engineering180180363TI6DJForeign language018009183TI6CBComputer-aided research009091NI6CBToxicology1809090274NISums for tree model research009090274NISums for tree model research009090182NIToxicology1809090182NIToxicology9090182NITOX CSBiosensors9090182NI7CSBiosensors9090183TII7CNEnvironmental protection and biotechnology9090183TI7CNPurification of biotechnology products1809018182NI7CXProfessional training00001818 <td>6 6 6 6 6 6</td> <td>CS CB CS CI CS CB</td> <td>Forensic biochemistry Molecular biology Biodegradable biopolymers and polymers Bioreactors Chemistry and technology of biofuels Enzymology</td> <td>9 9 9 9 9 9 9</td> <td>0 0 0 0 0</td> <td>9 9 9 9 9 9</td> <td>0 0 0 0 0 0</td> <td>18 18 18 18 18 18 27</td> <td>2 2 2 2 2 2 2 2</td> <td>N N N N T</td> <td></td>	6 6 6 6 6 6	CS CB CS CI CS CB	Forensic biochemistry Molecular biology Biodegradable biopolymers and polymers Bioreactors Chemistry and technology of biofuels Enzymology	9 9 9 9 9 9 9	0 0 0 0 0	9 9 9 9 9 9	0 0 0 0 0 0	18 18 18 18 18 18 27	2 2 2 2 2 2 2 2	N N N N T	
6 CB Genetic engineering 18 0 18 0 36 3 T 6 DJ Foreign language 0 18 0 0 18 3 T Image: Computer-aided research 0 0 9 0 9 1 N 6 CB Computer-aided research 0 0 9 0 27 4 N 6 CB Toxicology 18 0 9 0 27 4 N Sums for the semester: 6 117 27 108 9 261 30 4 3 7 CS Biocatalysis 9 0 9 0 18 2 N 7 CF Biosensors 9 0 9 0 18 3 T 7 CN Environmental protection and biotechnology 9 0 9 0 18 3 T 7 CI Purification of biotechnology products 18 0 9 0 2 N	6 6 6 6 6 6	CS CB CS CI CS CB CB CB	Forensic biochemistry Molecular biology Biodegradable biopolymers and polymers Bioreactors Chemistry and technology of biofuels Enzymology Protein engineering	9 9 9 9 9 9 9 9 18	0 0 0 0 0 0 0	9 9 9 9 9 18 0	0 0 0 0 0 0 9	18 18 18 18 18 18 27 27	2 2 2 2 2 2 2 2 4	N N N N T N	
6 DJ Foreign language 0 18 0 0 18 3 T Image: Computer-aided research 6 CB Toxicology 18 0 9 0 9 1 N Image: Computer-aided research 0 0 9 0 9 1 N Image: Computer-aided research 0 0 9 0 9 1 N Image: Computer-aided research 0 0 9 0 9 0 27 4 N Image: Computer-aided research 117 27 108 9 261 30 4 3 Sums for the semester: 6 117 27 108 9 261 30 4 3 7 CS Biocatalysis 9 0 9 0 18 2 N 1 7 CF Biosensors 9 0 9 0 18 3 T 1 7 CN Environmental protection and biotechnology 9 0 9 0 27 2	6 6 6 6 6 6 6	CS CB CS CI CS CB CB CB CI	Forensic biochemistry Molecular biology Biodegradable biopolymers and polymers Bioreactors Chemistry and technology of biofuels Enzymology Protein engineering Bioprocess Engineering	9 9 9 9 9 9 9 9 18 9	0 0 0 0 0 0 0 0 9	9 9 9 9 9 18 0 9	0 0 0 0 0 0 9 0	18 18 18 18 18 27 27 27 27	2 2 2 2 2 2 2 4 3	N N N N T N T	4
6 CB Computer-aided research 0 0 9 0 9 1 N 6 CB Toxicology 18 0 9 0 27 4 N Sums for the semester: 6 117 27 108 9 261 30 4 3 7 CS Biocatalysis 9 0 9 0 18 2 N 7 CF Biosensors 9 0 9 0 18 2 N 7 CN Environmental protection and biotechnology 9 0 9 0 18 2 N 7 CN Environmental protection and biotechnology 9 0 9 0 18 3 T 7 CN Professional training 0 0 0 0 0 0 4 N 7 CX Engineering project 0 0 0 0 9<	6 6 6 6 6 6 6 6	CS CB CS CI CS CB CB CI CB CB	Forensic biochemistry Molecular biology Biodegradable biopolymers and polymers Bioreactors Chemistry and technology of biofuels Enzymology Protein engineering Bioprocess Engineering Genetic engineering	9 9 9 9 9 9 9 9 18 9 18	0 0 0 0 0 0 0 9 0	9 9 9 9 9 9 18 0 9 18	0 0 0 0 0 0 9 0 0 0	18 18 18 18 18 27 27 27 36	2 2 2 2 2 2 2 4 3 3	N N N N T N T T T	
6 CB Toxicology 18 0 9 0 27 4 N Sums for the semester: 6 117 27 108 9 261 30 4 3 7 CS Biocatalysis 9 0 9 0 98 0 18 2 N 7 CF Biosensors 9 0 9 0 18 2 N 7 CF Biosensors 9 0 9 0 18 2 N 7 CN Environmental protection and biotechnology 9 0 9 0 18 3 T 7 CI Purification of biotechnology products 18 0 9 0 27 2 N 7 CX Professional training 0 0 0 0 0 4 N 7 CX Engineering project 0 0 0 0 18 18 2 N 7 CM Drug design and synthesis	6 6 6 6 6 6 6 6 6	CS CB CS CI CS CB CB CB CI CB DJ	Forensic biochemistry Molecular biology Biodegradable biopolymers and polymers Bioreactors Chemistry and technology of biofuels Enzymology Protein engineering Bioprocess Engineering Genetic engineering Foreign language	9 9 9 9 9 9 9 18 9 18 0	0 0 0 0 0 0 0 9 0 18	9 9 9 9 9 9 18 0 9 18 0	0 0 0 0 0 0 9 0 0 0 0	18 18 18 18 18 27 27 27 36 18	2 2 2 2 2 2 2 4 3 3 3 3	N N N N T T T T T	-
Sums for the semester: 6 117 27 108 9 261 30 4 3 7 CS Biocatalysis 9 0 9 0 18 2 N 1 7 CF Biosensors 9 0 9 0 18 2 N 1 7 CN Environmental protection and biotechnology 9 0 9 0 18 3 T 7 CI Purification of biotechnology products 18 0 9 0 27 2 N 7 CX Professional training 0 0 0 0 4 N 7 CX Engineering project 0 0 0 0 4 N 7 CI Process design 0 0 0 18 18 2 N 7 CI Process design 0 0 0 18 18 2 N 7 CM Drug design and synthesis 9 0 99	6 6 6 6 6 6 6 6 6 6	CS CB CS CI CS CB CB CB CI CB DJ CB	Forensic biochemistry Molecular biology Biodegradable biopolymers and polymers Bioreactors Chemistry and technology of biofuels Enzymology Protein engineering Bioprocess Engineering Genetic engineering Foreign language Computer-aided research	9 9 9 9 9 9 9 9 18 9 18 0 0	0 0 0 0 0 0 0 9 0 0 18 0	9 9 9 9 18 0 9 18 0 9 18 0 9	0 0 0 0 0 9 0 0 0 0 0	18 18 18 18 18 27 27 27 36 18 9	2 2 2 2 2 2 4 3 3 3 1	N N N N T T T T T N	-
7 CS Biocatalysis 9 0 9 0 9 0 18 2 N 7 CF Biosensors 9 0 9 0 18 2 N 7 CN Environmental protection and biotechnology 9 0 9 0 18 3 T 7 CI Purification of biotechnology products 18 0 9 0 27 2 N 7 CX Professional training 0 0 0 0 4 N 7 CX Engineering project 0 0 0 7 2 N 7 CI Process design 0 0 0 0 4 N 7 CI Process design 0 0 0 18 18 2 N 7 CI Process design 0 0 9 9 27 4 N 8ums for the semester: 7 54 0 45 99 198 30	6 6 6 6 6 6 6 6 6 6 6 6	CS CB CS CI CS CB CB CB CI CB DJ CB CB CB	Forensic biochemistry Molecular biology Biodegradable biopolymers and polymers Bioreactors Chemistry and technology of biofuels Enzymology Protein engineering Bioprocess Engineering Genetic engineering Foreign language Computer-aided research Toxicology	9 9 9 9 9 9 9 9 18 9 18 0 0 18	0 0 0 0 0 0 0 0 9 0 0 18 0 0	9 9 9 9 9 9 9 18 0 9 18 0 9 9 9 9	0 0 0 0 0 9 0 0 0 0 0 0 0 0	18 18 18 18 18 27 27 27 36 18 9 27	2 2 2 2 2 2 4 3 3 3 3 1 4	N N N T T T T T N N	
7 CS Biocatalysis 9 0 9 0 9 0 18 2 N 7 CF Biosensors 9 0 9 0 9 0 18 2 N 7 CN Environmental protection and biotechnology 9 0 9 0 18 3 T 7 CI Purification of biotechnology products 18 0 9 0 27 2 N 7 CX Professional training 0 0 0 0 4 N 7 CX Engineering project 0 0 0 72 72 11 N 7 CI Process design 0 0 0 72 72 11 N 7 CM Drug design and synthesis 9 0 9 9 27 4 N 7 CM Drug design and synthesis 9 0 45 99 198 30 1 0 Sums for th	6 6 6 6 6 6 6 6 6 6 5 8 8 8 8 8 8 8 8 8	CS CB CS CI CS CB CB CB CI CB DJ CB CB CB	Forensic biochemistry Molecular biology Biodegradable biopolymers and polymers Bioreactors Chemistry and technology of biofuels Enzymology Protein engineering Bioprocess Engineering Genetic engineering Foreign language Computer-aided research Toxicology ter: 6	9 9 9 9 9 18 9 18 9 18 0 0 18 18 117	0 0 0 0 0 0 9 0 18 0 0 27	9 9 9 9 18 0 9 18 0 9 18 0 9 9 9 9 108	0 0 0 0 0 9 0 0 0 0 0 0 0 0 9 9	18 18 18 18 18 27 27 27 36 18 9 27 261	2 2 2 2 2 2 2 4 3 3 3 3 1 4 30	N N N N T T T T T N N A	– –
7 CF Biosensors 9 0 9 0 9 0 18 2 N 7 CN Environmental protection and biotechnology 9 0 9 0 18 3 T 7 CI Purification of biotechnology products 18 0 9 0 27 2 N 7 CX Professional training 0 0 0 0 4 N 7 CX Engineering project 0 0 0 72 72 11 N 7 CI Process design 0 0 0 0 18 18 2 N 7 CM Drug design and synthesis 9 0 0 18 18 2 N 7 CM Drug design and synthesis 9 0 9 9 27 4 N Sums for the semester: 7 54 0 45 99 198 30 1 0 CI 117 16	6 6 6 6 6 6 6 6 6 6 5 8 5 8 5 6 5 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	CS CB CS CB CB CB CB CB DJ CB CB CB he semest	Forensic biochemistry Molecular biology Biodegradable biopolymers and polymers Bioreactors Chemistry and technology of biofuels Enzymology Protein engineering Bioprocess Engineering Genetic engineering Foreign language Computer-aided research Toxicology ter: 6	9 9 9 9 9 9 9 9 18 9 18 0 0 18 18 117	0 0 0 0 0 0 0 9 0 0 18 0 0 27	9 9 9 9 18 0 9 18 0 9 18 0 9 9 9 108	0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 9	18 18 18 18 18 27 27 27 36 18 9 27 261	2 2 2 2 2 2 4 3 3 3 3 1 4 30	N N N N T T T T T N T N N N N N N T T N A	– – – 3
7 CN Environmental protection and biotechnology 9 0 9 0 18 3 T 7 CI Purification of biotechnology products 18 0 9 0 27 2 N 7 CX Professional training 0 0 0 0 4 N 7 CX Engineering project 0 0 0 72 72 11 N 7 CI Process design 0 0 0 18 18 2 N 7 CI Process design 0 0 0 18 18 2 N 7 CM Drug design and synthesis 9 0 9 9 27 4 N Sums for the semester: 7 54 0 45 99 198 30 1 0 TOTALS FOR ALL SEMESTERS: 687 279 541 117 1624 210 22 22	6 6 6 6 6 6 6 6 6 5 8 8 8 8 9 7	CS CB CS CB CB CB CB CB CB DJ CB CB CB CB he semest	Forensic biochemistry Molecular biology Biodegradable biopolymers and polymers Bioreactors Chemistry and technology of biofuels Enzymology Protein engineering Bioprocess Engineering Genetic engineering Foreign language Computer-aided research Toxicology ter: 6 Biocatalysis	9 9 9 9 9 18 9 18 0 0 18 0 18 117	0 0 0 0 0 0 0 0 9 0 18 0 0 27	9 9 9 9 18 0 9 18 0 9 9 108	0 0 0 0 0 9 0 0 0 0 0 0 0 0 9 0 0 0 0 9	18 18 18 18 18 27 27 27 36 18 9 27 261	2 2 2 2 2 4 3 3 3 1 4 30	N N N T T T T T N 4	– – – 3
7 CI Purification of biotechnology products 18 0 9 0 27 2 N 7 CX Professional training 0 0 0 0 0 4 N 7 CX Engineering project 0 0 0 7 72 11 N 7 CI Process design 0 0 0 18 18 2 N 7 CI Process design 0 0 0 18 18 2 N 7 CM Drug design and synthesis 9 0 9 9 27 4 N Sums for the semester: 7 54 0 45 99 198 30 1 0 TOTALS FOR ALL SEMESTERS: 687 279 541 117 1624 210 22 22	6 6 6 6 6 6 6 6 6 6 6 5 8 5 8 5 7 7 7	CS CB CS CB CB CB CB CB CB CB CB CB CB CB CB CB	Forensic biochemistry Molecular biology Biodegradable biopolymers and polymers Bioreactors Chemistry and technology of biofuels Enzymology Protein engineering Bioprocess Engineering Genetic engineering Foreign language Computer-aided research Toxicology ter: 6 Biocatalysis Biosensors	9 9 9 9 9 9 9 9 18 9 18 0 0 18 18 0 0 18 117	0 0 0 0 0 0 9 0 0 18 0 0 27	9 9 9 9 9 9 9 18 0 9 18 0 9 9 9 108	0 0 0 0 0 9 9 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0	18 18 18 18 18 27 27 27 36 18 9 27 261 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18	2 2 2 2 2 4 3 3 3 3 1 4 30	N N N T T T T T N A	
7 CX Professional training 0 0 0 0 0 4 N 1 7 CX Engineering project 0 0 0 72 72 11 N 1 7 CI Process design 0 0 0 18 18 2 N 1 7 CM Drug design and synthesis 9 0 9 9 27 4 N 1 Sums for the semester: 7 54 0 45 99 198 30 1 0 TOTALS FOR ALL SEMESTERS: 687 279 541 117 1624 210 22 22	6 6 6 6 6 6 6 6 6 6 5 8 5 8 5 7 7 7 7 7	CS CB CS CB CB CB CB CB CB CB CB CB CB CB CB CB	Forensic biochemistry Molecular biology Biodegradable biopolymers and polymers Bioreactors Chemistry and technology of biofuels Enzymology Protein engineering Bioprocess Engineering Genetic engineering Foreign language Computer-aided research Toxicology ter: 6 Biocatalysis Biosensors Environmental protection and biotechnology	9 9 9 9 9 9 9 9 18 9 18 0 0 18 18 0 0 18 117	0 0 0 0 0 0 0 9 0 0 18 0 0 27	9 9 9 9 9 9 9 9 18 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 9 0 0 0 0	18 18 18 18 18 27 27 27 36 18 9 27 36 18 9 27 36 18 9 27 36 18 18 18 18 18 18 18	2 2 2 2 2 4 3 3 3 1 4 30 2 2 3	N N N T T T T T T T T T T T T T T T T N A	
7 CX Engineering project 0 0 0 72 72 11 N 7 CI Process design 0 0 0 18 18 2 N 7 CM Drug design and synthesis 9 0 99 97 27 4 N Sums for the semester: 7 54 0 45 99 198 30 1 0 TOTALS FOR ALL SEMESTERS: 687 279 541 117 1624 210 22 22	6 6 6 6 6 6 6 6 6 6 5 8 5 8 5 7 7 7 7 7 7 7 7	CS CB CS CB CB CB CB CB CB CB CB CB he semest	Forensic biochemistry Molecular biology Biodegradable biopolymers and polymers Bioreactors Chemistry and technology of biofuels Enzymology Protein engineering Bioprocess Engineering Genetic engineering Foreign language Computer-aided research Toxicology ter: 6 Biocatalysis Biosensors Environmental protection and biotechnology Purification of biotechnology products	9 9 9 9 9 9 18 9 18 9 18 0 0 18 18 117 9 9 9 9 9 9 18	0 0 0 0 0 0 0 9 0 0 18 0 0 0 27	9 9 9 9 9 9 9 18 0 9 9 18 0 9 9 9 9 108	0 0 0 0 0 9 0 0 0 0 0 0 0 0 9 0 0 0 0 0	18 18 18 18 18 27 27 27 36 18 9 27 261 18 18 18 27 27 36 18 9 27 261	2 2 2 2 2 2 4 3 3 3 3 1 4 30 2 2 2 3 2	N N N N N T T T T N	
7 CI Process design 0 0 0 18 18 2 N 7 CM Drug design and synthesis 9 0 9 9 27 4 N Sums for the semester: 7 54 0 45 99 198 30 1 0 TOTALS FOR ALL SEMESTERS:	6 6 6 6 6 6 6 6 6 6 8 Sums for t 7 7 7 7 7 7	CS CB CS CB CB CB CB CB CB CB CB CB CB CB CB CB	Forensic biochemistry Molecular biology Biodegradable biopolymers and polymers Bioreactors Chemistry and technology of biofuels Enzymology Protein engineering Bioprocess Engineering Genetic engineering Foreign language Computer-aided research Toxicology ter: 6 Biocatalysis Biosensors Environmental protection and biotechnology Purification of biotechnology products Professional training	9 9 9 9 9 9 9 9 9 18 0 0 0 18 117 9 9 9 9 9 18 0 0	0 0 0 0 0 0 0 9 0 0 18 0 0 27 27	9 9 9 9 9 9 18 0 9 9 18 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 0	0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18 18 18 18 18 27 27 27 36 18 9 27 261 18 18 18 18 18 0	2 2 2 2 2 2 4 3 3 3 3 1 4 30 2 2 2 3 2 2 4	N N N N N T T T T T T N N N N N N N N N N N N N N N N N N	3
7 CM Drug design and synthesis 9 0 9 9 27 4 N Sums for the semester: 7 54 0 45 99 198 30 1 0 TOTALS FOR ALL SEMESTERS:	6 6 6 6 6 6 6 6 6 6 6 5 8 5 8 5 7 7 7 7 7 7 7 7 7 7 7 7	CS CB CS CB CB CB CB CB CB CB CB CB CB CB CB CB	Forensic biochemistry Molecular biology Biodegradable biopolymers and polymers Bioreactors Chemistry and technology of biofuels Enzymology Protein engineering Bioprocess Engineering Genetic engineering Foreign language Computer-aided research Toxicology ter: 6 Biocatalysis Biosensors Environmental protection and biotechnology Purification of biotechnology products Professional training Engineering project	9 9 9 9 9 9 9 9 9 18 0 0 0 18 117 9 9 9 9 9 9 18 0 0 0	0 0 0 0 0 0 0 9 0 0 18 0 0 27 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9 9 18 0 9 18 0 9 9 9 9 9 9 9 9 9 9 9 9 0 0 0	0 0 0 0 0 9 0 0 0 0 0 0 0 0 9 0 0 0 0 0	18 18 18 18 18 27 27 27 36 18 9 27 261 18 18 18 18 18 18 18 18 17 0 72	2 2 2 2 2 2 4 3 3 3 3 1 4 30 2 2 2 3 3 2 4 11	N N N N T T T T T N T N T N N N N N N N N N N N N N N N N	3
Sums for the semester: 7 54 0 45 99 198 30 1 0 TOTALS FOR ALL SEMESTERS:	6 6 6 6 6 6 6 6 6 6 6 6 6 5 8 5 8 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	CS CB CS CB CB CB CB CB CB CB CB CB CB CB CB CB	Forensic biochemistry Molecular biology Biodegradable biopolymers and polymers Bioreactors Chemistry and technology of biofuels Enzymology Protein engineering Bioprocess Engineering Genetic engineering Foreign language Computer-aided research Toxicology ter: 6 Biocatalysis Biosensors Environmental protection and biotechnology Purification of biotechnology products Professional training Engineering project Process design	9 9 9 9 9 9 9 9 18 9 18 0 0 18 117 9 9 9 9 9 9 9 9 18 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 9 0 0 18 0 0 27 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9 9 9 18 0 9 9 18 0 9 9 9 9 9 9 9 9 9 9 9 0 0 0 0	0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18 18 18 18 18 27 27 27 27 36 18 9 27 261 18	2 2 2 2 2 4 3 3 3 3 3 3 3 3 1 4 30 2 2 2 3 2 2 4 11 2	N N N N T T T T T N T N T N N N N N N N N N N N N N N N N	3
TOTALS FOR ALL SEMESTERS: 687 279 541 117 1624 210 22 22	6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7	CS CB CS CB CB CB CB CB CB CB CB CB CB CB CB CB	Forensic biochemistry Molecular biology Biodegradable biopolymers and polymers Bioreactors Chemistry and technology of biofuels Enzymology Protein engineering Bioprocess Engineering Genetic engineering Foreign language Computer-aided research Toxicology ter: 6 Biocatalysis Biosensors Environmental protection and biotechnology Purification of biotechnology products Professional training Engineering project Process design Drug design and synthesis	9 9 9 9 9 9 18 9 18 9 18 0 0 18 117 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0 0 0 0 0 9 0 0 18 0 0 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9 9 9 18 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0 0 0 9 9 0 0 0 0 0 0 0 0 0 9 9 0	18 18 18 18 18 27 27 27 27 36 18 9 27 36 18 9 27 261 18 18 18 18 18 27 0 72 18 27 0 72 18 27	2 2 2 2 2 4 3 3 3 3 3 1 4 30 2 2 2 3 2 2 4 11 2 4	N N N N T T T T T T T N A N N N N N N N N N N N N N N N N N	3
TOTALS FOR ALL SEMESTERS: 687 279 541 117 1624 210 22 22	6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7	CS CB CS CB CB CB CB CB CB CB CB CB CB CB CB CB	Forensic biochemistry Molecular biology Biodegradable biopolymers and polymers Bioreactors Chemistry and technology of biofuels Enzymology Protein engineering Bioprocess Engineering Genetic engineering Foreign language Computer-aided research Toxicology ter: 6 Biocatalysis Biosensors Environmental protection and biotechnology Purification of biotechnology products Professional training Engineering project Process design Drug design and synthesis ter: 7	9 9 9 9 9 9 18 9 18 9 18 0 0 18 117 9 9 9 9 9 18 0 0 0 18 117 9 9 9 9 9 9 9 9 9 54	0 0 0 0 0 0 0 9 0 0 18 0 0 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9 9 9 18 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18 18 18 18 18 27 27 27 36 18 9 27 36 18 9 27 261 18 18 18 18 18 18 18 27 0 72 18 27 18 27 18 27 18 27 18 27 18 27 18 27 198	2 2 2 2 2 4 3 3 3 3 1 4 30 2 2 2 3 2 2 4 11 2 2 4 11 2 2 30	N N N N T T T T T T N T N	
	6 6 6 6 6 6 6 6 6 6 6 8 Sums for t 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	CS CB CS CB CB CB CB CB CB CB CB CB CB CB CB CB	Forensic biochemistry Molecular biology Biodegradable biopolymers and polymers Bioreactors Chemistry and technology of biofuels Enzymology Protein engineering Bioprocess Engineering Genetic engineering Foreign language Computer-aided research Toxicology ter: 6 Biocatalysis Biosensors Environmental protection and biotechnology Purification of biotechnology products Professional training Engineering project Process design Drug design and synthesis ter: 7	9 9 9 9 9 18 9 18 0 18 9 18 9 18 0 18 117 9 18 0 0 9	0 0 0 0 0 0 9 0 0 18 0 0 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9 9 9 9 9 18 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18 18 18 18 18 27 27 27 36 18 9 27 36 18 9 27 261 18 18 18 18 18 18 18 18 18 18 27 0 72 18 27 18 18 18 27 18 27 18 27 18 27 198	2 2 2 2 4 3 3 3 1 4 30 2 2 3 2 2 4 11 2 2 4 30	N N N N N T T T T T N	3

Note that not being granted credits from the modules marked with a red flag makes it impossible to make an entry for the next semester (even if the total number of ECTS credits is lower than the permissible debt), these are modules continued in the next semester or modules in which failure to achieve all assumed learning outcomes does not allow one to continue studies in the modules included in the next semester's study programme

3.3.3. Elective modules

The following modules are an extension of the table from the chapter 3.3.2. They can be chosen by students regardless of their specialisation / education path.

Semester	Org.Unit	name of the subject	Lecture	Class	Laboratory	Project/	Sum of	ECTS	Exam	Mand.
-										

						Seminar	hours			
2	ZE	Fundamentals of economics	18	0	0	0	18	2	Ν	
2	ZO	Fundamentals of management	18	0	0	0	18	2	N	
3	DJ	English (A)	0	18	0	0	18	2	Ν	
3	DJ	English (B)	0	18	0	0	18	2	Ν	
3	DJ	French (A)	0	18	0	0	18	2	N	
3	DJ	French (B)	0	18	0	0	18	2	Ν	
3	DJ	German A	0	18	0	0	18	2	N	
3	DJ	German (A)	0	18	0	0	18	2	Ν	
3	DJ	Russian (A)	0	18	0	0	18	2	Ν	
3	DJ	Russian (B)	0	18	0	0	18	2	Ν	
4	DJ	English (A)	0	18	0	0	18	2	Ν	
4	DJ	English (B)	0	18	0	0	18	2	Ν	
4	DJ	French (A)	0	18	0	0	18	2	N	
4	DJ	French (B)	0	18	0	0	18	2	Ν	
4	DJ	German A	0	18	0	0	18	2	N	
4	DJ	German (A)	0	18	0	0	18	2	Ν	
4	DJ	Russian (A)	0	18	0	0	18	2	Ν	
4	DJ	Russian (B)	0	18	0	0	18	2	N	
5	DJ	English (A)	0	18	0	0	18	2	N	
5	DJ	English (B)	0	18	0	0	18	2	N	
5	DJ	French (A)	0	18	0	0	18	2	Ν	
5	DJ	French (B)	0	18	0	0	18	2	N	
5	DJ	German A	0	18	0	0	18	2	N	
5	DJ	German (A)	0	18	0	0	18	2	N	
5	DJ	Russian (A)	0	18	0	0	18	2	Ν	
5	DJ	Russian (B)	0	18	0	0	18	2	Ν	
6	DJ	English (A)	0	18	0	0	18	3	Т	
6	DJ	English (B)	0	18	0	0	18	3	Т	
6	DJ	French (A)	0	18	0	0	18	3	Т	
6	DJ	French (B)	0	18	0	0	18	3	Т	
6	DJ	German A	0	18	0	0	18	3	Т	
6	DJ	German (A)	0	18	0	0	18	3	Т	
6	DJ	Russian (A)	0	18	0	0	18	3	Т	
6	DJ	Russian (B)	0	18	0	0	18	3	Т	

3.3.4. Verification methods of learning outcomes

Detailed rules and methods for the verification and assessment of learning outcomes that allow all learning outcomes to be verified and assessed are described in the Module Activity Sheets. Within the framework of a study programme, verification of learning outcomes is carried out in particular by means of the following methods: written, exam part practical, exam part oral, written pass, pass a part practical, oral pass, essay, colloquium, written test, observation of performance, portfolio, project presentation, written report, oral report, written test.

Detailed information about the verification of learning outcomes achieved by students can be found in the Module Activity Sheets at the URL address: http://krk.prz.edu.pl/plany.pl?Ing=EN&W=C&K=H&TK=html&S=1538&C=2020

3.3.5. Programme content

Programme content (educational content) is consistent with the learning outcomes and takes into account, in particular, the current state of knowledge and research methodology in the discipline or disciplines to which the course of study is assigned, as well as the results of scientific activity in this discipline or disciplines. A detailed description of the program content is available in the Module Activity Sheets at the URL: http://krk.prz.edu.pl/plany.pl?lng=EN&W=C&K=H&TK=html& S=1538&C=2020, which are an integral part of the study programme.

.cademic savoir-vivre K_W15, K_U06, K_K03						
• Principles and norms of behavior in interpersonal relationships. The origin of the concept of etiquette. Legal and moral norms and custom. The universal rules of the etiquette.Personal culture.Importance of good morals in private and professional life.Stereotypy.Good manners and the image. • Classic savoir-vivre rules Fundamentals of priority and principles of its application. Forms of showing respect. Welcome - the rules and exceptions. Titles in the academic environment.Personal and business procedures.Preferred - rules and exceptions. Wishes and congratulations.Faux pas. • Communication etiquette. Standards of good behavior in interpersonal culture of clothing in creating a positive image. Savoir vivre a choice of dress. General dress rules. Clothing accessories. Fashion and extravagance.The most frequent weaknesses in the selection of individual elements of the outfit.The right outer appearance as part of the positive image.						
Analytical chemistry	K_W04, K_U06, K_K01, K_K03					
 Classification of analytical chemistry, scale, accuracy and precision of a method. Analytical errors, statistical evaluation of results. General scheme of quantitative analysis. Classification and characteristics of methods of chemical analysis. Theoretical basis of volumetric analysis. Alkacymetric. Reductometry and oxidimetry. Complexometry. Precipitation analysis, effects accompanying solid product separation. Chemical calculations and analyses in the field of volumetric and gravimetric methods. • Alkacymetric: determination of sulphuric acid concentration. • Redox: determination of Fe(II) in Mohr's salt, determination of Cu(II) concentration. • Complexometry: determination of Ca(II) or Mg(II) ionic concentrations. • Precipitation analysis: determination of Cl- ions concentration. • Chemical calculations in the field of volumetric analysis and cravimetric methods. 						
Analytical methods in biochemistry K_W04, K_W05, K_W10, K_U03, K_U09, K_K03						
\bullet basics of MS, NMR and FTIR \bullet fluorescent methods, electrophoresis electrophoresis etc. advanced microsopic methods	, X-ray diffraction • biomolecule separation methods - chromatography,					
Biocatalysis	K_W08, K_W10, K_W14, K_U03, K_U19, K_K01, K_K03					

enzyme composition • enzymatic mechanisms • enzyme kinetics; • enzyme immobilisation • industrial enzymatic processes; samples of enzymatic processes

Biochemistry	K_W05, K_W14, K_U06, K_U09, K_U15, K_K01, K_K03					
• Biochemistry - the molecular logic of living organisms. • Structure and properties of amino acids. Proteins: a hierarchical organization of structure Basic aspects of the protein structure and function. Myoglobin and hemoglobin. • Introduction to enzymes. Factors affecting enzyme activity. Enzyme kinetics and inhibition. Control of enzyme activity. • Carbohydrates: monosaccharide, oligosaccharide and polysaccharides structures Glycoproteins. • Lipids. Structure of cell membranes. Mechanisms of transport across cell membranes. • Membrane receptors and sygna transduction in cell. • Transduction of genetic information in cell. DNA structure and replication. RNA synthesis and splicing. Protein synthesis. Identification of amino acids and proteins by specific colour reactions and TLC method. • Determination of protein concentration. • Identification of superoxide struct. • Isolation of cholesterol from a chicken egg yolk. Identification of cholesterol by Salkowski method. • Determination of superoxide dismutase (SOD) activity from the yeast Saccharomyces cerevisiae. • Identification of superoxide dismutase (SOD) activity from the yeast Saccharomyces cerevisiae. • Isolation of superoxide dismutase by nativ gel electrophoresis and identification of LPDH isoenzymes. • Isolation of macromolecules by griftration. • Separation of LPDH isoenzymes. • Isolation of macromolecules by gelectrophoresis and identification of superoxide dismutase by nativity from the yeast Saccharomyces cerevisiae. • Isolation of superoxide dismutase by nativity from the gelectrophoresis and identification of LPDH isoenzymes. • Isolation of macromolecules by gelectrophoresis and identification of LPDH isoenzymes. • Isolation of macromolecules by gelitration. • Separation of lysozyme from chicken egg by ion-exchange chromatography. • Identification of lysozyme by SDS-PAGE electrophoresis						
Biodegradable biopolymers and polymers	K_W04, K_W12, K_U16, K_K03					
 Mechanisms of the polymerization and their relationships with the real supermolecular structure and physicmechanical properties Factor Depolymerization processes, degradation and destruction of biodegra Synthetic polymers susceptible to biodegradation processes. Polymer pharmacy and medicine. Biodegradation of natural polymers. Synthes high-molecular blood products based on gelatin. Evaluation of the proper 	process of synthesis. • Types of polymers in terms of their chemical and rs determining the chemical and biological resistance of polymers. dable polymers. Use of these processes in technology and industry. • ic biomaterials. • Natural polymers and their importance in the art of is of poly (caprolactone) and evaluation of its properties. Preparation of ties of selected biopolymers used as packaging.					
Bioinformatics	K_W01, K_W03, K_W14, K_U01, K_U02, K_U06, K_U08, K_U09, K_U10, K_K01					
Introduction to bioinformatics. Basic concepts. E-learning in biotechn Computer representation and visualisation of biopolymer structures bioinformatics • Integrated sequence search system • 3D visualisation an	ology. • Data mining methods in bioinformatics • Sequence alignment • • Bioinformatic databases • PCA and cluster analysis methods in d analysis of protein in PDB database					
Biomaterials processing	K_W04, K_W10, K_U16, K_K01					
 Classification of polymers. Basic definitions for polymer chemistry:molecular mass, polymerization degree, space building. Polyreactions types Polymerization classifications • Technological metods of polymerization: mass, solvent, suspensions and emulsion. Polyurethanes, polyamides polyolefins. Hydrogels - fabrication and properties. • Ceramic biomaterials - introduction. Classification of ceramic biomaterials. Outline of ceramic biomaterials technology • Alumina in bone surgery and dentals. Manufacturing of alumina biomaterials Manufacturing and properties of hydroxyapatite. • Methods for the preparation and properties of porous ceramic biomaterials • Technology and properties of carbon biomaterials Technology and properties of metallic biomaterials. Technology and properties of the composite biomaterials • Preparation and characterization o solved of the preparation and characterization o solved of the composite biomaterials • Preparation and characterization o solved of the composite biomaterials • Preparation and characterization o solved of the composite biomaterials • Preparation and characterization o solved of the composite biomaterials • Preparation and characterization o solved of the composite biomaterials • Preparation and characterization o solved of the composite biomaterials • Preparation and characterization o solved of the composite biomaterials • Preparation and characterization o solved of the composite biomaterials • Preparation and characterization o solved of the solved of the preparation of the composite biomaterials • Preparation and characterization o solved of the solved of the preparation of the composite biomaterials • Preparation and characterization o solved of the solved of the preparation of the prepara						
Biomolecular process modeling	K_W03, K_W14, K_U01, K_U08, K_U19, K_K01, K_K03					
• Fundamentals of molecular modeling methods: molecular mechanics, molecular dynamics, Monte Carlo method. Molecular forces. Basics of molecular quantum mechanics: ab initio methods, semi-empirical methods, methods exploiting density functionals (DFT). Biomolecular geometry optimization. Biomolecular structure data bases (Protein Data Bank PDB, PDBe, PDBj), ligand data bases (PubChem, ZINC, BindingDB), enzyme data bases, others). Information downloading from biological data bases. Elements of homological analysis. Basics of spatial protein structure modeling. Modeling of quantities describing physicochemical properties of biological and chemical systems. Ligand conformation analysis Application of molecular modeling methods in studies of biochemical system reactivities. Study of thermodynamics and transition states to chemical reactions. Molecular docking: docking methods, scored functions of assessment of ligand-receptor interaction. Examination of structure data bases (PubChem ZINC, BindingDB), enzyme data bases, Entrez and ExPASy services, others). Information downloading from biological and the structure and physicochemical properties of biomolecules. Adjustment of protein and ligand structures. 3. Modeling of quantities describing physicochemical systems. Conformation alaysis of ligands. 4. Modeling of protein structure. 5. Modeling c quantities describing physicochemical systems. Conformational analysis of a structures. Information of structures for docking decking networks and thermical systems. Structure and physicochemical properties of biomolecules. Adjustment of protein and ligand structures. 3. Modeling of quantities describing physicochemical reaction (thermodynamics, transition states) using en example of a reaction of a drug with a specific receptor. 6. Calculation of QSAI descriptors. 7. Examination of structure-biological activity relationships (QSAR). 8. Molecular docking processes. Investigation of ligand-receptor docking processes.						
Biophysics	K_W02, K_U06, K_K01					
• The bases of the biophysics. Classification of biomolecules. Classification of biomacromolecules (biopolymers). Chemical structures. Super- molecules structure. Interactions of molecules and macromolecules. • Methods of the determination of molecular masses and their distribution for biopolymers:- the method of light scattering statistically (Rayleigh), dynamics (quasi-elastic) - the viscometery, osmometery, bulio- and cryoscopy, method of sedimentation, MALDI-TOF, Gel Permeation Chromatography (GPC) or Self-Exclusion Chromatography (SEC). • Biothermodynamic systems and processes. Phase transitions. Entropy , enthalpy, free energy, heat capacity biopolymers. The phenomena of thermo conductivity mass transportation, viscosity of polymers. Thermal analysis methods for examination the thermal proprieties of biopolymers: TGA, DSC, temperature-modulated DSC, TMA, thermal conductivity. • The chosen physical methods for the investigations of the structure of biopolymers: spectroscopic (IR, spectroscopy Raman, NMR), X-ray spectroscopy (SAXS, WAXS), degree amorphous and crystalline phases. Microscopic techniques: optical microscopy, electron microscopy, atomic force microscopy (AFM). Static and dynamic methods to determine the mechanical proprieties of polymers (dynamic mechanical analysis -DMA). Mechanical modules. • The elements of the biophysics of organs: the sense of the hearing system; visual system, respiration system, the circulation blood system. The influence of physical factors on alive organisms (mechanical termerer and meisture and mechanical analysis and productive and mechanical factors on alive organisms (mechanical termerers).						
Bioprocess Engineering	K_W10, K_W19, K_U12, K_K01					
• Heat Transfer: (Fixed) Stationary Heat Transfer, Heat Transfer Driving Thermal Conduction Coefficient, Heat Non- And Conductors, Thermal Newton Equation, Heat Transfer Cases, Criterial Numbers And Equatio Overall Heat Transfer, Newton Equation for Overall Heat Transfer, Ove Basis Of Heat Exchanger Design. Mass Transfer: (Fixed) Stationary Ma Coefficients, Mass Transfer Resistance, Kinds of the Mass Diffusion, Ma Cases, Criterial Numbers And Equations, Overall Mass Transfer, Newto Disappearance of Mass Transfer Resistance, Overall Mass Transfer, Newto Disappearance of Mass Transfer Resistance, Overall Mass Transfer Newto Disappearance of Mass Transfer Resistance, Overall Mass Transfer Driv Transfer – Basic Knowledge Absorption; A) Process Definition, B) Static Notations, C) Process Kinetics, Mass and Overall Mass Transport in th Absorption, Minimum of the Spraying Liquid Mass and Velocity, E) Over Absorption, Chemisorption. • Distillation And Rectification: Points A) to F) Equilibrium for Binary Component System, Kinds of the Equilibrium Aberrations From Raoult Law, Azeotropes, Differential Distillation, Equil Batch Rectification, Continuous Rectification, Heat and Mass Balance: Operation Lines of the Rectification, Minimum and Maximum Minimum Amount. Exstraction: Points A) to F) Analogous to the Same Above with	Force, Kinds of the Heat Transfer: Thermal Conduction, I-St Fourier Law, Conduction Across Wall, Heat Transfer Resistance, Heat Convection – ns, Heat Radiation, Heat Screen Meaning, Heat Losses to Environment, erall Heat Transfer Coefficient, Some Cases of Transient Heat Transfer, iss Transfer, Driving Force, Mass Diffusion, I-St Fick Law, Mass Diffusion ass Diffusion, Mass Convection, Newton Kinetic Equation, Mass Transfer in Equation for Overall Mass Transfer, Overall Mass Transfer Coefficient, ving Force, Basis Of Mass Exchanger Design. Concurrent Heat and Mass c's of the Process – Absorption Equilibrium, Kinds of the Equilibrium Line e Absorption, D) Mass Balance of the Absorption, Operation Line of the rall Mass Transfer Driving Force int Absorption, F) Dynamic Model of the Analogous to the Same Above with the Following Differences: Distillation Line Notations - for Ideal System – Raoult Law, Nonideal Systems – ibrium Distillation, Mass and Overall Mass Transport in the Rectification, s of the Rectification, Heat and Mass Balances of the Operated Plate, of the Column Reflux, Column Efficiency Measured by Theoretical Plate the Following Differences: Extraction Equilibrium for Ternary Component					

System, Ideal System – Nernst Law, Nonideal Systems – Aberrations From Nernst Law, Stepping Extraction Parallel-Current and Counter-Current Extraction, Minimum and Maximum of the Extrahent Mass, Kinds of the Mathematics Solution of the Mentioned Above Extraction Cases, Column Extraction, Dynamic Model of the Column Extraction.

Bioreactors	K_W07, K_W11, K_U15, K_U19, K_K01
Definition of bioprocess engineering. Stoichiometry of microbial growth enzymatic reactions. Bioreactors: batch reactor, chemostat, chemostat column reactors, fluidization reactors, membrane reactors. Designing of the statement of the stat	 oxygen balance. Kinetics of cells growth, product formation, kinetics of with recycle, multistage chemostat systems, plug flow reactor, bubble- pioreactors. Scaling-up and scaling-down.
Biosensors	K_W10, K_U06, K_K01
Classification of chemical sensors. Theoretical basics of chemical reconductometric sensors. Optical sensor, physics of optical fibers, optical of piezo- and pyroelectricity, chemical layers of mass sensors. Therm chemical sensors in industrial analytical control, clinical chemistry and emical sensors.	cognition. • Electrochemical sensors - potentiometric, amperometric and al fiber sensors – design, operation and examples. • Mass sensors, basics al sensors - pyroelectric sensors, gas catalytic sensors. • Applications of vironment protection. Prospects of development of chemical sensors.
Cell biology	K_W05, K_W14, K_U06, K_U09, K_U15, K_K01, K_K03
 Similarities and differences in structure of prokaryotic and eukaryot components. • Evolution and function of subcellular structures. • Mecha cycle and course of mitosis and meiosis. • Basic laboratory methods a tissues. • Isolation of chloroplasts and mitochondria from the plan chromatography. 	tic cells. • Basic research methods applied in studies of cell and its nisms of cell membrane transport. • Signal transduction in the cell. • Cell nd safety rules and regulations. • Microscopic observations of cells and t cells. • Separation of chlorophylls and carotenoids be thin layer
Chemical and biotechnological equipment	K_W11, K_W13, K_U17, K_K01
 Classification of chemical apparatus. Fundamentals of transport phenor resistance. Liquid outflow from the tank • Apparatus for mixing, aeration and fermenters - construction solutions and the principle of operation. B Slurry separation by deposition, sedimentation, flotation, classification. apparatus. • Heat exchangers, evaporators and sterilizers. • Apparatus for Apparatus for extraction and crystallization 	 mena of heat and mass momentum. The nature of the fluid flow. Fluid flow n and disintegration of biomass. Demand for mixing power. Bioreactors ioprocesses in fluidised bed. Characteristics of comminuted materials. Filtration and spinning of biological suspensions, process rules and or absorption and adsorption. Apparatus for distillation and rectification.
Chemistry and technology of biofuels	K_W05, K_U15, K_U19, K_K05
 1. Introduction to the course. Requirements for the completion of the organic raw materials) as feedstocks for biofuels production. First- and of analysis of biofuels Conversion of cellulose and lignocellulosie. Al production Future trends in biofuels, directions of research 	course. The role of fossil liquid fuels and biofuels. • Biomass and wastes next-generation biofuels. Fermentation in production of biofuels. Methods gae biomass in biofuels. • Gaseous bio-fuels - properties, applications, f analysis of biofuels • Biodiesel synthesis • Production of bioethanol
Chemistry of cosmetics	K_W05, K_W10, K_U02, K_U16, K_K02
 Inorganic compounds with therapeutic action. An overview of the mos cosmetics: Structure-activity correlations. Anatomy and physiology of the functions: antimicrobial agents, colorants, UV filters, antioxidants, s ceramides, vegetable raw materials, elixirs youth, immunostimulants in c oral care, colour cosmetics, aerosols and perfumes. Manufacture and C assessment, legislation, microbial preservation, performance evaluatio Nomenclature of Cosmetic Ingredients. Threats to the environment and experience creating and evaluating hair and skin products. Emulsions in gels. 	t important organic compounds used in cosmetics. Physical chemistry of e skin. Anatomy and physiology of the hair. Cosmetic ingredients and their urfactants, fragrances, vitamins, liposomes, proteins, peptides, lipids, cosmetics. Chemistry of specific product categories such as hair, skin and control: packaging, production, quality assurance, product stability, safety n and market research. Laying the cosmetic formulations. International human health posed by some of the ingredients of cosmetics. • Hands-on ncluding creams and lotions; surfactant systems including shampoos and
Computer science	K_W03, K_W14, K_U02, K_U08, K_K01
• Definitions of basic concepts: the algorithm, computer program, components of a computer and their functions. Multiprocessor computer tools. MS-Office programs: Word, Excel, PowerPoint. • Computer viru Telecommunications systems. Websites construction. Legal, ethical a algorithms: data flow diagram, program flow diagram. Computer program • The basic elements of the configuration of software environment and Pascal. Declaration and implementation section of the unit. Data types d variables. Computer memory management. Programming of branches according to principles of software engineering. • The Windows oper education. • Microsoft Office package: Word, Excel, PowerPoint. Develo editors. • Getting to know the skeletal program TEST.PAS. Preparating procedures, running and testing program.Development of project docume	computer system, informatic system, the operating system. The main r. • Operating systems and their types. Computer programs, utilities and ses, protection and prevention. Computer networks (Internet, Intranet), nd social issues of computer science. • Representation formalisms of development cycle: specification, design, coding, testing, documentation. compiler for Turbo Pascal v. 7.0. Construction of programs and units in lefined in Pascal. • Main control statements in Pascal. Static and dynamic and loops. The definition of procedures and functions. Program testing ating system. Searching for information on the Internet. Internet-based pment of laboratory data. Preparing of presentation. • Chemical structure on of the project, the development of the algorithm, implementation of entation. Acceptation of the student's project.
Computer-aided research	K_W03, K_U01, K_U06, K_U08
Strategies of searching chemical structures and metabolic databases biodegradation pathways for chemical compounds and generation of con	Computer database of protein families • CAOS - computer prediction of binatorial libraries • Computer design of new drugs • Chemical similarity
Drug design and synthesis	K W10. K W12. K U16. K U17. K K03
 Drug from the idea for the implementation: Leading Structure - Pharmacokinetics; QSAR; Combinatorial Synthesis. Laboratory: chosen seeking the medicine, choice of the site of action of the medicine, choice solid phase - bases and assumptions. • Combinatorial synthesis - idea, n structure of the active compound. • Pharmacophore, isostere - definition, betablockers and statins. • Elements of strategy of planning the synthes the synthesis of medicines/drugs in including analysis of the applied s Performing five laboratory exercises from the area of the isolation, the sy instructions placed on sd of the coordinator, before beginning of the cycle 	search; relation between the structure and the activity of the drug; methods of synthesis of drugs. • Definition of the medicine/drug, stages of e of the biological assay, seeking the leading structure. • Synthesis on the nethods. • Isolation and purification of the active ingredient, elucidation the examples. • Synthesis of the most populardrugs e.g. prazole, antibiotics, is of new potential drugs. The most popular types of the reaction used in ynthesis in the pharmaceutical industry. • Written passing the subject. • ynthesis and analysis of medical products during of 5 lesson according to classes.
Engineering graphics	K_W03, K_W14, K_U02, K_U06, K_K01
 Technical charts, project views with Monge's method, perspective pictor fits in mechanical engineering. Description of microstructure on mach Standardized graphical symbols apparatus and equipment used in the pr 	oriali • sections. • Dimensioning • Drawing of various joints. • Tolerances, nine element surfaces. Assemble drawing and drawing of elements. • ocesses of chemical technology • Reading the documentation.
Engineering project	K_U01, K_U03, K_U04, K_U06, K_U08, K_U09, K_U10, K_K01, K_K04
Getting to know the professional literature on the subject • Experime related to the use of research tools that are appropriate to the studied an a written report. • Discussing how to prepare a multimedia presenta Discussions after the multimedia presentation of the results of own resea	ental measurements, the creation of a computer program or other work ea and educational profile. Development of research results in the form of tion, rules for presenting papers. Presentation of the diploma project. rch presented by students.
Environmental protection and biotechnology	K_W14, K_U03, K_U19, K_K02, K_K05
 Determination and removal of phosphorus compounds in the volu Biodegradation of organic compounds Biotechnological methods of was 	me coagulation process. Microbiological degradation of cellulose. ste processing from the food industry

Enzymology	K_W08, K_W14, K_U06, K_U09, K_U15, K_K01, K_K03					
Construction of enzymes, mechanism of action, reaction kinetics • Tech	niques for enzyme analysis • The use of enzymes in biotechnology					
Forensic biochemistry	K_W12, K_W14, K_U02, K_U16, K_K03					
 metabolites - structures, applications, biological function • Elements of toxicology, harmful compounds - classification, effects on hu organism, • Basics of chemical and biochemical analysis in forensic sciences, application of these methods, instrumental methods in fore analysis • Introduction to analysis of analytical results, basics of interpretation of MS, NMR, FTIR spectra • Serology, DNA profiling, inorganic oragnic material analysis, analysis of dyes, paints, microscopic analyses. • analysis of structures of harmful compounds with spectrosc methods • Detection of blood stains • Fingerprint analysis methods • Quantification of heavy metals in urine • LCMS analysis of narcotic physiological fluids 						
General and inorganic chemistry	K_W04, K_U06, K_K01, K_K03					
 Struture of atom. Periodicity of chemical properties. Ionization energy, electron affinity, electronegativity. Metal and non-metals. Chemical bond: Covalent bonds. Formal oxidation state. Molecular orbital and valence bond theory. States of matter. Phase transistions. Gas state. Ideal gas state equation. Units of matter. Solid state. Ionic and molecular crystals. Liquids and solutions. Units of concentration. Chemical equilibrium. Ma action law. The basic calculations: fundamental laws. Concentration of solutions: way of expression, conversion of concentration, dilution a mixing of solutions. Stoichiometric calculations based on chemical reaction equation. Elemental and real chemical formula. Yield of reaction Oxidation and reduction reactions. Gas laws. Chemical static, mass action law, chemical equilibrium. Liquids and solutions. Liquids and solutions. Colligati properties. 2. Electrolytes. Electrolytic dissociation. Strong and weak electrolytes. 3. Acids and bases. Ampholytes. Buffer solutions. 4. Properties of elements. Inorganic compounds, preparation methods end properties. 9. F-block elements. 10. Complex compounds. 4. Hydrolysis, the hydrolysis constant and degree. 5. Solubility product. • 1. Bas laboratory operations and equipment. Synthesis of inorganic compounds. 2. Classification of inorganic compounds. 3. Types of chemic reactions. 4. Solutions. 7. Inorganic complexes. 8. Hydrolysis - electrolytes – electrolytic degree and constant, pH, alkacymetric indicato 6. Buffer solutions. 7. Inorganic complexes. 8. Hydrolysis - the hydrolysis constant and degree. 9. Precipitation, dissolving and chemic compounds. 10. Oxidation and reduction reactions. 4. Hydrolysis constant and degree. 9. Precipitation, dissolving and chemic reactions. 6. Buffer solutions. 5. electrolytes – electrolytic degree and constant, pH, alkacymetric indicato 6. Buffer solutions. 7. Inorganic complexes. 8. Hydrolysis - the hydrolysis constant and degree. 9. Precipitation, dissolving and chemic re						
General microbiology	K_W07, K_W14, K_U06, K_U09, K_U15, K_K01, K_K03					
 The structure and function of prokaryotic cells • Metabolic diversity of r the environment • The role of microorganisms in biogeochemical cycles Isolation and preliminary identification of microorganisms 	nicroorganisms • Bacterial secondary metabolites and their importance in • Interaction of microorganisms • The basic microbiological techniques •					
Genetic engineering	K_W06, K_W09, K_W12, K_W14, K_U06, K_U09, K_U15, K_U19, K_K01, K_K03, K_K07					
chain reaction (PCR). The use of these fragments for various purposes in molecular genetics. Molecular cloning of genes in prokaryotic al eukaryotic cells. Plasmid vectors, cosmids, phage vectors, shuttle vectors, YAC (yeast artificial chromosome). Construction of vectors: restrictii enzymes, ligation. Mechanisms for obtaining transgenic organisms: transformation, transduction, transfection. Techniques for analysis al identification of transformants. Expression systems in bacteria and eukaryotic cells. Manipulation of gene expression. Controlled in-vir mutagenesis. Techniques for transgenic plants and animals. Purification and identification of the recombinant proteins obtained by differe methods of analysis: affinity chromatography, electrophoresis and immunoblotting, mass spectrometry. • Evolution of NCBI model. Understandi the diversity of DNA sequences deposited in the databases. Finding and selective use of information in planning experiments. Designing PC primers for the selected sequence and in any orientation, with attached restriction sites occurring at the start and stop codons for protein domair The construction of restriction map, characterization of restriction enzymes. Cloning without the use of genetic transformation for cloning, sequencing and overexpression. Transformation of transgenic E. coli with pET expression vector or pGlo coding GFP protein. Cultivation of bacteria on t discriminating medium. The chemical transformation and electrotransformation. Isolation of colonies containing cloned gene. Preoaration						
Genetics	K_W06, K_W14, K_U03, K_U06, K_U09, K_K01, K_K03					
 Rules of inheritance, discoveries of Mendel, Morgan, basis of the quant genetic material Mutations, chromosomal aberrations, aneuploidy, po parents, including prediction of Blood type and genetic diseases in hum animals 	itative and population genetics • The structure of DNA and organization of olyploidy • Genetic crosses, determining the phenotype of offspring and ans and prediction of the outcomes of breeding procedures in plants and					
Immunological techniques in biotechnology	K_W05, K_W09, K_W14, K_U06, K_U09, K_U15, K_U17, K_K01, K_K03					
 Structure of animal and human immune system, lymphoid organs – pri system • Antigens and the mechanisms of their identification. Charac Mechanism of receptor activation in B and T cells by an antigen: a components of immune system, structure of the immune system T cell Obtaining monoclonal antibodies using the method of in vivo and in vitr qualitative and quantitative evaluation of detectable macromolecules cytometry • The use of recombinant antibodies in a diagnosis and therap 	mary and secondary, cytokine receptors and their properties, complement cteristics of innate and acquired immunological response mechanisms. ntigen processing and presentation • Signal transmission between the receptors • In vivo production of monoclonal and polyclonal antibodies. o immunization, and the method of genetic engineering • Methods of the t, using the ELISA method, immunoprecipitation, immunobloting, flow y. Classic and recombinant vaccines					
In vitro cultures	K_W14, K_U06, K_U09, K_U19, K_K03					
 Definition of plant in vitro culture. Application of plant in vitro culture • Organisation of in vitro culture laboratory: equipment, rules of sterile work, • Methods of terilization for glasware, media, tool. • Media used in plant in vitro culture: types of media, ingredients (macro- microelemets, vitamins, plant hormones, aminoacids, sugars, geling agents). Composition and preparation of Murashige nad Skoog medium 1962. • Primary and secondary explants. Sources of primary explants. Methods of primary explants harvesting. • Organogenesis in in vitro culture. Micropropagation as technological application of in vitro culture. • Kallus culture: induction, maintenance, application. • Suspension culture: induction maintenance application. • Root culture. • Application of in vitro culture in obtainig virus free plants. • Anther culture. Microproper culture and production or dihaploids. • Isolation, culture and fusion of plant protoplasts. • Work safety • Rools of sterile work in plant in vitro culture laboratory. Operetion or equipment. • Preparation of medium for carrot callus induction. • Induction of calli from primary explants of carrot • Preparation of medium for medi						
Industrial microbiology	K_W07, K_W10, K_U12, K_U18, K_U19, K_K01					
 Biological and technological criteria for the classification of microorgani industrial use from environmental samples and optimization of condition naming microbiological Secondary metabolites as precursors and implementation on an industrial scale Mechanisms of xenobiotic microorganisms for industrial use from the environmental samples Scimproving production characteristics of industrial microorganisms 	sms used in the industry • Methods for the isolation of microorganisms for ons in laboratory culture • The correct use of terminology in the field of products of specific biosynthesis • Fermentation processes and their is biodegradation • Microbiology of food • Techniques for isolating reening tests of proteolytic microorganisms in a laboratory • Methods for					
Instrumental analysis	K_W04, K_W10, K_U16, K_U17, K_K01					
 Analytical process, its elements and statistical evaluation of each step. Emission Spectroscopy - basis of the method, methods of sample at Molecular spectroscopy in the ultraviolet and visible light. Infrared sp qualitative analysis. Fundamentals of nuclear magnetic resonance spectroscopy 	Analysis of elements and compounds by spectroscopic methods. Atomic omization and excitation, applications. Atomic absorption spectroscopy. ectroscopy. Spectra recording techniques, methods of quantitative and ectroscopy. The quantitative and structural analysis based on the NMR					

spectra. Fundamentals of mass spectrometry. Interpretation and application of analytical mass spectra for organic compounds. Chromatographic methods for separation of mixtures. Basic principles and classification. Theoreticasl basis of separation process. Retention mechanisms and parameters. Separation efficiency. Definition and determination of resolution index, theoretical plate number, selectivity factor. Separation techniques in liquid chromatography - adsorption chromatography, partition - normal/reverse chromatography, ion-exchange chromatography , gel filtration chromatography. Selection of the chromatographic conditions - rules for the selection of the stationary and mobile phases. High Performance Liquid Chromatography HPLC and thin-layer HPTLC. Isocratic and gradient techniques, instrumentation. Gas chromatography. The rate theory of chromatography - band broadening, column efficiency. Optimization of column performance. Chromatographic methods of qualitative and quantitative analysis. Potentiometric methods. Design, operation and application of the selected ion-selective electrodes. Conductometry and its analytical application. Voltammetric methods - linear-sweep LSV, cyclic CV, and stripping CSV, ASV techniques. Quantitative and qualitative analysis. Selected applications in analytical laboratory and industrial applications, criteria for the method selection. • Identification of components in the mixture of hydrocarbons and their determination by gas chromatography GC. Determination of hydrocarbons and their derivatives using HPLC. Analysis of the composition of mixtures of organic compounds using a GC-MS. Identification and a quantitative analysis by IR spectroscopy Determination of the concentration of substances by the UV-VIS spectroscopy. Structural analysis on the base of 1H-NMR spectra. Determination of the element content in the solutions by atomic absorption spectroscopy (AAS). Polarimetric determination of sucrose in aqueous solution. Quantitative determination of elements by cyclic voltammetry CV. Determination of iodide and chloride by potentiometric precipitation titration Determination of the concentration of the phenol by conductrometric titration method

Mathematics

K_W01, K_U06, K_K01

· Elements of mathematical logic and set theory. Basic properties functions of one real variable, polynomials, Horner's scheme, rational functions and other elementary functions, arc functions. • Sequences of numbers: monotonicity and boundedness of sequences, limit of a sequence theorems about existence of a limit, Napierian base and its applications. Series of numbers: properties of series of numbers, tests for convergence of series, tests for divergence of series. Limit and continuity of function of real variable: definitions of limit, counting properties of limits of functions notion of continuity of a function. Asymptotes of a function. • Test based on the materials covered during lectures and tutorials. • Differential calculus of function of one real variable: notion of derivative of function, derivatives of higher order, derivatives of basic elementary functions derivative of composite function, De l'Hospital's theorem, mean value theorems, investigation of monotonicity and determination of extrema of functions, convex and concave functions, points of inflexion of graph of function, investigation of the behavior and systematic procedure in graphing of function. • Integral calculus of function of one real variable: notions of primitive function and indefinite integral, integration by parts and by substitution, integration of rational functions, integration of irrational functions, integration of trigonometric functions. Notion of definite integral, applications of definite integrals, improper integrals. • The set of complex numbers: canonical and polar form of a complex number, de Moivre's formula, calculation of power and root of complex numbers. • Matrices: definition, operations on matrixes and its properties, square matrices determinant and its properties, inverse matrix, rank of a matrix. Systems of linear equations: Kronecker-Capelli's theorem, Cramer's systems. Ordinary differential equations: notions of general solution and particular solution, initial-value problem, ordinary differential equations of first-order (about separable variables, linear, homogeneous respect to x and y, linear), ordinary differential equations of second-order reducible to equations of first-order, linear equations. • Test based on the materials covered during lectures and tutorials. • Elements of calculus of vectors and analytic geometry: vectors, operations on vectors and its properties, scalar product of vectors and its properties, vector product and triple scalar product of vectors, equations of a plane and of a straight line in the space. • Basic properties of function of several variables: limit and continuity of functions of several variables, partial derivatives, extrema of functions of several variables. Elements of field theory: scalar and vector fields, gradient, divergence, rotation, potential of vector field. Double and triple integrals - basic concepts.

Molecular biology

K_W05, K_W06, K_W14, K_U06, K_U09, K_K01, K_K03

• Basic terminology in the field of molecular biology. Differences in the structure of genetic information between pro and eucariots. Introduction to labolatory procedures - isolation of nucleic acids. • Plasmids: structure, replication, biological function, transfer of information between cells, resiatance to unfavorable environmental conditions like antibitics, heave metal ions, sulfonamids, phenol and its derivatives. Virulence towards host, elimination of competitors from environment. Systematcs of pasmids. Application of plasmids in genetic ingeniering; Ti, Ri, E. coli plasmids.Introduction to laboratorie; restriction enzymes, restriction mapping • Structure of the bacterial chromosome. Recplication of bacterial ribosoms. Translation in procariotic cells. Posttranslational modification of proteins. • Sources of diversity in microorganisms. • Compartmentalization of eucariotic cells and its influence on structure of eucariotic chromosom. • E. coli plasmids isolation. • DNA electroforeis in agarose gel. • Digestion of DNA with restriction enzymes. • PCR • Restriction mapping , aanalizys of PCR products. • DNA ligation

Organic Chemistry

K_W04, K_W10, K_U16, K_U17, K_K03

• Includes messages from the scope of the structure and the property of organic compounds, onomastics, the stereochemistry of both mechanisms of the reaction and elements of the organic synthesis. Notions of the organic chemistry, patterns of organic compounds, structure of particles, functional groups, reactions in the organic chemistry, marking of structures of organic compounds. Classification of organic compounds. Types of trusses, polarization, inductive effect, free radicals, karbokationy, karboaniony. Notion elektrofila and nukleofila. Phenomenon of the resonance. Isomerism. The acidity and the alkalinity of organic compounds. Alkanes, cycloalkanes, olefines alkynes, dieny, arenas, fluoro derivatives, organometallic. compounds. • Basic concepts: patterns of organic compounds, drawing, functional groups, level of oxidizing, nomenclature. Types of bonds, hybridization. • Alkanes, cycloalkanes, olefines, dieny, alkynes - characteristics of these groups, physical and chemical characteristics, isomerism. • Aromatic hydrocarbons - characteristics, physical and chemical properties, basic reactions. • Isomerism at each of, examples. • The nucleophilic substitution and the elimination. • Fluoro-derivatives. • Organometallic compounds. • Revision of lecture material. • Continuation of lecture contents of the previous semester and includes messages about groups of such connections as: alcohol, phenols, ethers, sulfur-compounds, anines. Aldehydes, ketones, carboxylic acids and derivatives. Lipides, carbohydrates, amino acids, proteins. Heterocyclic compounds. • Carboxylic acids, derivatives, reactions, properties. • Amines-obtaining, properties, reactions. • Carbohydrates, encored, ervatives, reactions, properties. • Amines-obtaining, properties, reactions. • Carbohydrates, eractions. • Chemistry of the life. • Revision of lecture material. • Obtaining and structure elucidation product from different class of organic compounds.

Packages of application software

K_W03, K_U02, K_U08

• Application of MS Excel to tabelarize functions, create simple and advanced plot charts, perform array operations, simple statistical analysis, operations with macros and to solve chemical problems and model simple chemical processes using solver tool. • Application of Origin Lab software to prepare professional 2D and 3D charts, to perform statistical processing of experimental data, to estimate parameters for equation describing experimental data, to perform differentiation and integration of discrete functions • Application of Matlab and/or Maple programs for arithmetic calculations, algebraic transformations, solution of linear and nonlinear equations, inequalities and systems of equations, symbolic and numerical function integration and differentiation, matrix algebra, solving differential equations, graphing functions of one and two variables. Introduction to Programming in Matlab or Maple. Creation of simple programs for solving selected mathematical problems.

Physical chemistry

K_W04, K_U06, K_K01, K_K03

• The theory of perfect gases. Equations of state. Dalton's law and Amagat's law. The theories of real gases. The kinetic theory of perfect gases. Chemical thermodynamics. System. Surroundings. Work. Heat. Cyclic processes. Reversible processes. Isothermal reversible expansion of a gas. The first law of thermodynamics. Internal energy. Enthalpy. Heat capacity of gases, liquids and solids. Thermochemistry. Enthalpy of formation of compounds. Heat of solubility. Bond energy. The temperature dependence of reaction rate on temperature. The second and the third law of thermodynamics. Spontaneous transformations. Carnot cycle. Entropy. Entropy changes in reversible and irreversible processes. Entropy of mixing. Gibbs energy. Helmholtz energy. Differentials and derivatives of thermodynamic functions. The influence of pressure and temperature on free energy. Thermodynamic criteria of spontaneity of processes. Partial molar quantities. Chemical potential. Interatomic and intermolecular interactions. Viscosity and surface tension of liquids. Phase equilibria and diagrams. Three-component systems. Phase rule. Clapeyron equation. Clausius-Clapeyron equation. Activity. Activity coefficient. Boiling temperature – composition diagrams of two-component solutions. Actoropes. Colloidal solutions, micelles. Chemical equilibrium. A thermodynamic equilibrium constant. Chemical equilibrium in gas phase. Gibbs energy function. The influence of pressure and temperature on chemical equilibrium. • Physicochemical calculations connected with theory of perfect and real gases, chemical thermodynamics, phase equilibria, colligative properties of solutions •

Chemical kinetics. The rate and the order of reaction. Zero, first, second, third and fraction order reactions. Determination of reaction order and rate constant. Dependence of reaction rate and reaction rate constant on temperature. Arrhenius theory. The transition state theory. Complex reactions. Kinetics of enzymatic reaction. Basics of katalysis. Adsorption. Adsorption theories. Electrolyte solutions. Debye-Hückel theory. Specific and molar conductance of strong and weak electrolytes. Transport numbers. Ionic mobility. Thermodynamics of electrolyte solutions. Electrochemistry. Semicells and electrochemical cells. Chemical reactions in an electrochemical cell. Electromotive force of electrochemical cells. Thermodynamics of electrochemical cell. Physicochemical applications of semicells and electrochemical cells. • Physicochemical calculations connected with chemical equilibium, chemical kinetics, simple, complex and enzymatic reactions, theory of electrolyte solutions, ionic conductance and electrodics. • Determination of molar refraction of organic liquids. Determination of surface tension of liquids. Determination of critical micelle concentration. Determination of reaction order and rate. Determination of thermical activation of a chemical reaction. Determination of phase equilibrium in three - component system. Determination of adsorption isotherm. Determination of limiting molar conductivity of electrolyte solution Determination of ΔG , ΔH and ΔS of chemical reaction. Electrochemical determination of solubility constant. K K01, K K03, K K04 Physical education · Acquainting with the rules of participation in classes and the conditions for obtaining a pass. Discussion of the principles of safe use of sports facilities and equipment and safety rules in force during the course. • Implementation of various sets of warm-up exercises and exercises focused on developing the student's basic motor skills. • Shaping general physical fitness, motor coordination, endurance, flexibility, speed through individual selection of sports activities (eg: football, volleyball, basketball, table tennis) or recreational physical activity (eg: badminton, gym exercises). • Acquainting with the rules of participation in classes and the conditions for obtaining a pass. Discussion of the principles of safe use of sports facilities and equipment and safety rules in force during the course. • Implementation of various sets of warm-up exercises and exercises focused on developing the student's basic motor skills. • Shaping general physical fitness, motor coordination, endurance, flexibility, speed through individual selection of sports activities (eg: football, volleyball, basketball, table tennis) or recreational physical activity (eg: badminton, gym exercises). Physics K_W01, K_W02, K_K03 · Measurements and physical units. Dimensional analysis. Functions of one and several variables. Scalars and vectors. Derivatives in physics Coordinate Systems. • Motion along a straight Line, Motion in two or three dimensions, kinematics of rotational motion. Newton's laws of motion Applying Newton's laws Work, power and energy, Potential energy. Conservative forces Momentum, Impulse, and Collisions Dynamics of Rotational Motion, Rotation of Rigid Bodies • Periodic motion, differential equations and complex numbers in physics, resonance. Mechanical waves, wave phenomena, acoustics: sound and hearing • Fluid Mechanics, Introduction to thermodynamiscs: temperature and heat, Thermal properties of matter, Laws of thermodynamics, entropy • Introduction to physical laboratory classes. The uncertainty of the measurements. • Introduction to electromagnetism: Electric charge and electric field, Gauss's law, Work and electric potential. Capacitance and Dielectrics. Conductors, electric current, resistance, circuits and Electromotive force. Magnetic field. The Lorentz force. A electric charge and current-carrying wire in magnetic field. The magnetic field induced by current flow. Hall effect, Cyclotron, mass spectrometer. The phenomenon of magnetic induction. • Electromagnetic waves: dispersion, Interference, diffraction, polarization. Application of optics. • Introduction to modern physics and quantum mechanics, wave-particle duality of light and matter, probability and uncertainty principle Schrodinger equation, free particle, particle in potential well, stationary states, atomic structure, condensed matter Introduction to nuclear physics, nuclear reactions, nuclear power, stability and radioactivity, biological effects of radiation Plant biochemistry K_W05, K_W06, K_W14, K_U09, K_U18, K_K03 · Familiarization with biochemical specificity of plant cell · Identifying and obtaining gene of desired function K_W03, K_W13, K_W14, K_W19, K_U02, K_U08, K_U14, K_U15, Process desian K_U19, K_K01, K_K02, K_K03 • Introduction to simulation programs. Basic rules for the selection of thermodynamic models • An introduction to computing simulation processes (flow of information, analysis of degrees of freedom, the classification of simulation methods). The calculation of chemical reaction processes and reactors. • The criteria for evaluation of the project - "pure" chemical technology. Hierarchical method, an example application. Calculation of the heat exchangers. • Basics of simultaneous methods. Calculation of separators with two liquid phases. • Design Heuristics. The calculation of basic unit operations and analysis of the results (flash calculations, distillation, extractive distillation, absorption). • Calculation of pipeline networks and their elements. The calculation of the basic operations of fluid transport (pumps, compressor, expander, valves). • The use of sensitivity analysis as a tool for selection of parameters of the apparatus. Professional training K_U02, K_K01, K_K02, K_K03 • Training on safety work and anti fire regulations in plant/company/institution. Extending of knowledge gained on university in practical way Introducing to work of plant/company/institution and with their internal procedures. Preparation to job in future. K_W03, K_W05, K_W12, K_W14, K_U03, K_U08, K_U09, K_U19, Protein engineering K_K02 · Molecular aspects of enzymatic activity · Selected aspects of design and protein structural modifications · Selected examples of protein engineering • Protein engineering in-silico for the improvement of its biotechnological properties Purification of biotechnology products K_W10, K_U17, K_K03 • Strategies to recover and purify product. The permeate techniques of the mixtures separation: ultrafiltration, osmosis, reverse osmosis, microfiltration, dialysis, electrodialysis. Mathematical models of the processes. The examples of applications for species separation in biotechnology. Chromatographic and adsorptive technique of species separation. Thin layer chromatography, column periodical chromatography and continuous chromatography (SMB). Expanded bed adsorption chromatography. The normal and reversed phase chromatography. Ion exchange and gel chromatography. Theory of chromatographic separation: basic mathematical models of adsorption and mass transfer. The influence of process parameters: temperature, composition of mobile phase, solid phase, pH, ion strength of mobile phase on the mixtures separation. The optimization of periodical and continuous process. Principles of selections of chromatographic systems. Capillary electrophoresis and electrochromatography. Drying methods, crystallization methods. K_W03, K_U01 Scientific and technological information · Searching for information on the most abstracts and bibliographic important publishing houses (Chemical Abstracts) with the use of index Search for chemical information in scientific journals available on-line from the Rzeszów University of Technology library. Social competences K_W15, K_U06, K_K04 · Social and interpersonal competences as an ability to achieve social and individual goals while maintaining good relations with interaction partners • Components of social competences • Competencies determining the effectiveness of behavior in the situation of social exposure • Strategies for image formation and self-presentation • Conditions of interpersonal skills and the importance of social competences • Improving skills and abilities relevant to social competences (assertive, cooperative, social, and social resourcefulness) • Developing and improving skills and abilities relevant to social competences (mutual understanding and getting to know each other, creating a climate of mutual trust, helping and influencing, solving problems and conflicts) • Developing and improving skills and abilities essential for social competences (communication skills, assertive skills, skills to strengthen, sustain others, self-expression skills) • Developing and improving skills and abilities relevant to social competences - verbal and non-verbal communication • Improvement of the skills of beneficial self-presentation (especially in professional conditions) • The importance of social competences Statistics and results elaboration K_W01, K_W03, K_W14, K_U10, K_K01 LIMS (Laboratory Information Management System) - selected problems. • Experimental database. Rejection outliers in data. Selective use of data • Exploratory data analysis of the analytical measurements, descriptive statistics, cross-sectional data, normality tests, statistical graphs. The frequency distribution of a variable. • Statistical hypothesis testing. Parametric and non-parametric tests. • Multiple regression. Study of correlation between variables. • One-way and multiple analysis of variance. Discriminant analysis, factor analysis and principal components analysis. • Fitting

the observed variable distribution to a theoretical distribution. • Management of Statistica program data. Parameters of variable distribution • Study of empirical variable distribution. Statistical inference- nonparametric tests. • Statistical inference- parametric tests. • Analysis of the relationship between variables: linear and non-linear regression. • Analysis of Variance.

Technical safety and ergonomics

K_W13, K_W14, K_U12, K_K01, K_K02, K_K04

• Legislation in the field of labour protection, including the following: the rights and responsibilities of students and staff in the field of safety and liability for violation of safety rules and regulations, liability for accidents, the legislation concerning insurance benefits for safety violation and accidents at work. • Responsibilities of the university in the provision of safe and healthy learning environment: health and safety requirements for school buildings, the requirements for systems and equipment located in the building of the university. • Subject matter and scope of work safety and ergonomics. • Security in terms of the system (security as a management objective, as a legal obligation, a moral norm). • Models of accidents at work (the classic models of accidents, near misses models, modelling human behaviour in emergency situations). • Statistical and behavioural theories of safety. • Ergonomic aspects of the system human – machine – environment. • Assessment of the reliability of the systems: human – computer, driver – car, pilot – airplane, as real cases of human – machine systems. • Methods for measuring the burden of dynamic physical labour and static physical labour. • The study of the burden of mental work. • Dangerous and harmful factors connected with work process and working conditions (some ergonomic principles and recommendations for the design of the spatial structure of the workplace, indication and control devices, technological processes, objects). • Ergonomic factors in the organization of work. • Ergonomic assessment of machinery and equipment and improving working conditions. • University rules of conduct in case of accidents and emergencies (fire, accident, etc.) pre-medical aid rules in the event of an accident, fire protection (including evacuation).

Toxicology

K_W14, K_U03, K_U19, K_K02, K_K05

Introduction on the toxicology, definition of poison, intoxication, intoxication types, toxicity of chemical compounds, accumulation, persistence, way of introduction of poisons in the organisms. • Factors which influence of toxicity of poisons, synergisms and antagonisms. • Biotransformation of poisons in the organisms and degradation process of the poisons in the environment, elimination of poisons from organisms (pathway and biochemical mechanisms of elimination), etiology of intoxication, definition of abbreviation which will be used in the toxicology. • Prevention of the intoxication and basic therapy of intoxication REACH process – legislative in the European Union. • Risk assessment, definition of RA, identification of harmful substance, dose – response, exposition, risk characteristic, calculation of ADI (or RD) and LD50, definition of abbreviation NOEL, NOAEL, NOEC, NOAEC, SF, UF, MF, ADI • Practical presentation of risk assessment of use of herbicide in the aquatic environment. • IDevelopmental toxicology, toxicology versus spermatogenesis, oogenesis and fertilization. Evaluation of toxic compounds on the embryo and developmental organism after birth to adulthood. • Toxicology of choice inorganic compounds (CO, CN-, NO2-, NH3, H2S, CI2, PH3 ...). Toxicology of pesticides – divide of pesticides according to use in the agricultural practice, toxicology of selected pesticides according to chemical groups • Intoxications of selected drugs • Mycotoxins - characterization, toxicity, risk, divide by effect on the bodily organs) • Poisonous animals – chemical compounds of animal toxins, representative animal species. • General information about toxicology, diagnose of intoxication, sampling, packing and sending for chemical compounds separable by water steam distillation • Determination of warfarine (kumarine) in the biological material • Determination of alkaloids in biological material by TLC method • Determination of drugs in the biological material by TLC method • Determination of drugs in th

programme content of elective modules

English (A)

K_U02, K_U06, K_U07

· Talking about yourself, famiy, home, likes and dislikes. Question forms. • Talking about important dates and events. Writing formal and informal emails. • Discussing differences between men and women. Expressing opinions. • Describing people. Revision of verb tenses: present and past simple, present and past continuous. • Talking about yourself. Conversation and interviews. • Giving advice on successful interviews. Talking about yourself. • Talking about films. Expressing opinion about films. • Talking about life experiences. Verb tenses: present perfect and past simple. • Talking about the media and news. Expressing opinion on conspiracy theories. Matching headlines with explanations. • Talking about stories from the past. Writing a news report. • Talking about lying. Collocations with 'say' and 'tell'. • Telling a story or anecdote from the past. Listening to people telling anecdotes. • Phrases to describe a good/bad experience. Talking about memorable moments. Writing about one of your happiest memories. • Expressing opinions Talking about problems of teenagers and their parents. • The future (plans): the present continuous, going to, will might. Writing messages; learn to use note form. • The future (predictions): will, might, may, could, going to, likely to. Future time markers; idioms Listening to predictions about the future of communication. Talking about how things will change in the future. • Reading a short story about a misunderstanding. Dealing with misunderstandings. Types of misunderstandings; phrases to clarify/ask someone to reformulate • Listening to telephone conversations involving misunderstandings. Learning to reformulate and retell a story about a misunderstanding. Role-playing resolving a misunderstanding. • Reading an article about millionaires. Modals of obligation: must, have to, should. • Discussing the qualities needed for different jobs. Completing a survey and discussing the results. • Reading about childhood dreams. Reading job advertisements. Used to and would. • Listening to two people describing dream jobs gone wrong. Talking about past habits. Writing a covering letter. • Reaching agreement Business collocations. Phrases to give opinions, • Listening to people making decisions in a meeting. Learning to manage a discussion, Participating in a meeting and creating a business plan. • Office conversation; phrases to describe routines. Describing a day in your life. Reading an article about how technology changed the world. Comparatives and superlatives. Vocabulary: technology. • Discussing how technology has changed the world. Talking about different types of transport and their uses. Writing an advantages versus disadvantages essay. Talking about future hopes and plans. Grammar: Future Perfect, Future Continuous. • Listening to people answering difficult general knowledge questions. Doing a short general knowledge questionnaire; answering questions on your area of expertise. • Polite requests. Problems and solutions. • Listening to conversations about technical problems. Learning to respond to requests. Role-playing asking and responding to requests. • Reading about basic emotions. Zero and first conditionals. -ing versus -ed adjectives; multi-word verbs with on, off, up and down • Listening to a radio programme about therapies. Talking about your emotions. Discussing what advice to give people in a variety of situations. • Second conditional. Verb-noun collocations • Discussing what you would do in different hypothetical situations. Writing a letter of advice. • Giving good and bad news. Life events. • Listening to conversations where people receive news. Learning to introduce and respond to news. Role-playing giving someone news • Phrases to describe a good/bad experience. Talk about memorable moments. Writing about one of your happiest memories. Reading a short introduction to The Secret of Success. Present perfect simple versus continuous. • Present and past modals of ability. Reading a biographical text about the memory men. • Listening to a three-way conversation about memory. Talking about your abilities. Writing a summary. Clarifying opinions. Reading a story about qualifications. • Listening to a discussion about intelligence. Learning to refer to what you said earlier. Choosing the right candidate for the job. Giving opinions and examples. • Reading a BBC blog about neighbours. Articles. Quantifiers • Describing your neighbourhood and discussing how it could be improved. • Relative clauses. Vocabulary connected with the internet. Reading a website review. • Listening to descriptions of online communities. Comparing real-world and online activities. Writing a website review. • Being a good guest. • Listening to people describing guest/host experiences. Learning to accept apologies. Discussing problematic social situations. • Revision for the written examination. • Speaking practice - preparation for the oral examination.

English (B)

K_U02, K_U06, K_U07

• Flatmating, family, personality vocabulary, asking questions. Speaking, listening. • Vocabulary used in informal emails. Writing an informal email, checking accuracy • Feelings, gradable and ungradable adjectives, word formation. Reading, speaking, listening. Grammar: Present Perfect • Advertisements. Making polite phone enquires. Reading, listening, speaking. • Writing a summary of a first encounter story • Social issues. Verbs and nouns with the same form. Grammar: Present Perfect • Preventing crime, surveillance. Giving solutions. Grammar: the Passive • Formal written language. Writing a letter of complaint. • Newspaper extracts. Expressing opinions. Opinion adjectives. Reading and speaking. • Discussing ingredients of happiness; carrying out a happiness survey. Writing tips for being happy for a website. • Games. Discussing behaviuor and annoying habits and routines. Grammar: would/used to.Speaking. • Talking about leisure. Writing an opinion essey. Using linkers. • Talking about holidays. Grammar: Future forms, countable and uncountable nous. • Describing procedures. Common actions in procedures. Talking about holidays. Verbs. • talking about unusual experience. Recommending. Writing a story. • Reading a story. Sayings. Grammar: wish/if only • Talking atout reading training a tot experience from the past. Grammar: adverbs. • Wishes and regrets. Multi-word verbs. Grammar: wish/if only • Talking atout reading

habits, favourite books, likes and dislikes. Reading a summary. • Describing a favourite scene in a film. Writing a description of a favourite scene. Rading and talking about the worst inventions. Bicycles. Change. Compound nouns. Grammar: articles. • Discussing advertising tactics and the influence of advertising. Grammar: condictionals. • Marketing and advertising. Writing a report. Learning to make written comparisons. Brainstorming ideas. Adjectives. Suggesting ideas. Showing reservation. • Presenting a new business idea. Writing: a product leaflet. • Talking about different ages. Word formation - nouns. Grammar: Modal verbs. • Talking about future hopes and plans. Grammar: Future Perfect, Future Continuous. • Writing a letter to your future self. Using linkers of purpose. • Collocations. Convincing. Asking for clarification. • Collocations. Living longer. Taking part in aclass debate. Writing: a forum comment. • Television. different kinds of TV programmes. Interesting facts about TV. Multiword verbs. Quantifiers. • Retelling real and made-up stories. Reading a questionaire. Grammar: reported speech. • Writing a discursive essay. Reading a newspaper article. Broadships and tabloids. Predicting. • Mistakes in press and TV. Re-telling a news story. Writing: a news article. Reading news stories about behaviour in tough situations. Collocations. Difficult decisions. Grammar: conditionals. • Feelings. A quiz on whether you're a morning or an evening person. Different attitude to time. Grammar: -ing form and infinitives. • Idioms connected to time. Writing an informal article. • Adjectives of manner. Talking about how to handle awkward situations. • Describing a family or cultural ritual. Writing about a family ritual. • Watching an extract from a programme about body language. • Discussing how good witness you are. Crime and criminals. Grammar: ing form and infinitives with different meanings. • Synonyms. Verbs with prepositions. Crimes. Grammar: modal verbs. • Reading an advice leaflet bout how to avoid trouble on holiday. Avoiding repetition. Writing a story about a lucky escape. • Reporting a crime. Solving problems. Rephrasing. • People in unusual situations. Survival items. Describing a dangerous adventure. • Professional language: mathematical symbols and terminology. Basic mathematical operations. • Professional language: Fractions, powers, logarithms. • Revision for the written examination. • Revision for the written examination. • Speaking practice - preparation for the oral examination. • Speaking practice - preparation for the oral examination.

French (A)

K_U02, K_U06, K_U07

• Interrogative pronouns (simple and complex inversion). • Trip around Paris; short advertisements - writing. • Describing events with the use of le passé composé tense. • Vocabulary related to describing the past. • Similarities and differences between Polish and French educational systems. Interpreting figures. • Presenting the university and the field of study. • Describing your last holidays - the use of l'imparfait and le passé composé tenses. • Direct object pronouns in various tenses and moods. • Indirect object pronouns in various tenses and moods. • Living in the city and in the country - advantages and disadvantages; comparatives and superlatives. • Real estate ads analysis; le conditionnel présent mood. Possessive pronouns. • Hypothesizing and giving opinions; impersonal verb forms. • Describing things; the place of an adjective in a sentence. Relative pronouns. • Vocabulary related to shopping; negotiating the price. • House chores; sharing duties with the family members. • Favourite dish - preparing a questionnaire; written comments on its results. • Outfits for various occassions; family celebrations. • "Dont" relative pronoun. Giving personal opinion. • Means of transport - comparison. • A biography of a famous person; le plus-que -parfait tense. • The role of fashion in people's lives - presenting opinions. • Direct and indirect object pronouns COD/COI in the past tense. • The use of past participle with the subject and direct object. • Reported speech - positive sentences. • Car accident - expressing reasons. • Relationships within neighbourhood - describing people. • Hypotheses about text characters. • Sharing a flat - expressing personal opinions. • The "gérondif" mood as a way to express simultaneity, manner, reason. • Entertainment ans free time activities. • Reported questions. • Complex relative pronouns. • Presenting the selected French region. • Active and passive voice. • A film review. • Newspaper article - the use of the passive voice. • Job advertisement, CV, cover letter - documents analysis. • Vocabulary and expressions used in administrative correspondence - writing a cover letter. • A job interview. Students' work, socializing and building a network of contacts. • The "subjonctif" mood - introduction. • Describing work experience. • Internet as the most popular medium. • Future tenses: le futur proche/ le futur simple; conditional "si+présent+futur simple". • Plans for the future. • Conditional « si+ imparfait+conditionnel présent ». • Expressing wishes. • Adverbs - the place in the sentence. • Private letter and reply to a private letter.

French (B)

K_U02, K_U06, K_U07

• Describing and reporting events in the past tense. • Paris - the center of fashion. • Pronouns COD/COI in various tenses. • Modern and dying professions. • A famous fashion designer - presentation. • Demonstrative and possessive substatival pronouns. • Simple and complex relative pronouns. • Jeans - a universal timeless outfit. • Complaints and solving problems, giving advice. • Expressing reason and result. • The "subjorctif" mood - expressing purpose. • Traffic regulations - obligations and prohibitions. • Reported questions. • Choosing profession, justyfiyng. • Expressing the reason. • Living in homeland and abroad, giving arguments. • National symbols of Poland and France. • "Le passé simple - literary tense". • Comparisons - various living styles, the comparative of irregular adjectives. • Real estate market in France and in Poland. • Expressing acquiescence. • Emigration and mobility, expressing opinions. • "Le savoir-vivre" - good manners. • What is proper and improper - similarities and differences concerning Polish and French customs. • Negatives - summary. • Expressing prohibition. • Expressing hypothesis. • Passive voice in a newspaper article. • Climate changes - vocabulary related to ecology. • People's eco-friendly habits. • Plans for the future - time expressions. • Inventions which revolutionized people's lives. • Expressing hypothesis and condition. • Eco-firendly solutions for the city, region and country. • Ideal friend; superlatives. • Modern idols. • Presenting the favourite character. • Passions in our lives. • Tense concordance in a short story. • Globalisation, positive an negative consequences. • Verb patterns with an infinitive. • Expressing disagreement towards proposals. • The art of giving arguments. • A mobile phone: hell or paradise? • Where does Europe end? - information about the European Union. • Verbs useful for giving arguments. • Arguments cohesion - coherence linkers. • Sentence transformations - expressing coherence. • Higher education - facts and expectations. • Present

Fundamentals of economics

K_W15, K_W16, K_W18, K_U11, K_U14, K_K06

· Introduction to Economics (outline of economic thought, the basic concepts, principles and assumptions of microeconomic analysis, the place of economics in the system of social sciences and relationships with other disciplines). Introduction to microeconomics. • The model of the market economy (institutions, productivity, efficiency, actors, resources and streams in the economic system, market - classifications and functioning). Demand (law of demand, exceptions, determinants, elasticity of demand), supply (the law of supply, exceptions, determinants, elasticity of demand), the balance of the market in the short, medium and long term, the impact of regulated prices on the market, model cobwebs. Consumer choice (the functioning of households, usability, first and second Gossen law, pension consumer Marshall, the balance of the consumer). • The rules of the enterprise (introduction to the theory of enterprise, basic definitions, classifications and processes). • The short run and long run production function in the market, economies of scale, choice of optimal technology. • The instruments of cost management in the enterprise, cost function in the long and short term, costs and liquidity. • Perfect competition and monopolistic competition. • Various degrees of competitiveness in the marketplace: monopolies, oligopolies • Introduction to macroeconomics, the basic phenomena and macroeconomic problems. • The development of economic systems, economic growth - measuring and conditions of the product and national income and its determinants, economic conditions (cycles) and the role of investment in the economy, analysis of the situation in Europe and the world. • The importance of the public finance sector, the organization SFP (sub), the impact of fiscal policy on national income, the role of the state in the economy, the budget as a tool for influencing the economy, the issue of budget deficit and public debt, the impact of public support (including EU funds) for the development of entities the national economy, analysis of the situation in Europe. • The development of the monetary system, the role of money in the economy, money in the strict sense and broad sense, the demand for money, the money supply and the mechanisms of its creation, quantitative theory of money, monetary aggregates. • The banking system of the state, the role of the central bank and monetary policy tools of monetary policy, the interbank market and the activities of commercial banks. • The phenomenon of inflation and its effects on social and economic demand and supply-side causes of inflation, the measurement of inflation - inflation, analysis of the situation in Europe, anti-inflation policy. • The labor market, employment policy, the importance of competence and demographic processes, labor market flexibility, unemployment as a problem of economic and social development. • International economic relations, the foreign exchange market, balance of payments, the single market of the European Union and its importance for the development of Member States, including developing countries. The European Union in the global economy.

Fundamentals of management

K_W15, K_W16, K_W18, K_U11, K_U14, K_K06

Management as an academic discipline
 Company and its environment as an object of management
 Management features
 Conterporary management problems.

German (A)

K_U02, K_U06, K_U07

• New communication media. Establishing new contacts: Speed-dating. • Describing one's language skills - working with a video material. Declension of an adjective after definite, indefinite and no article. • Media competences, ability to creatively use internet assets in foreign language learning. Time adverbs. • Bisness meetings in a new environment, forms of greeting and introduction. • Strategies of learning language for special purposes. • Private and business meetings. Modal particles. • Planning and organizing official events. • Spoken and written invitations, establishing the date of the meeting. Rektion of the verb. Adverbial pronouns in questions and answers. • Working with a video material - 'Oktoberfest'. Planning and preparation of a presentation. • Business lunch. Quiz about etiquette. • Features of a good presentation. • Preparing product presentation. • Planning a holiday, travel bureau's offers. Assumptions - 'werden + wohl' verbs + infinitive. • Accommodation - hotel rating, opinions on internet sites. Relative sentences, relative pronouns. • Public transport in German speaking countries. • Future vehicles and travels. Future tense 'Futur I'. • Working with a video material - dream travels. • Organizing a conference, choosing a hotel, business mail. • Flat market, different forms of accommodation. Complex nouns. • Living community, student's house. Looking for a flat - advertisements. Time prepositions. • A student room, flat appliances, description of functions of furniture and items of every day use. • Switching flats during holiday. Word order. • Multi generation house. • Office and its equipment, positive rapport. • Living business community, pros and cons. • Presenting a profession - working with a video material. • Ideal work place. Conditionals. • Job advertisements, writing a cv. • Different ways of job searching. Advice and tips for job applicants. Sentences with 'damit' and 'um...zu'. • Job applications, talking about your education and work experience. • Small-talk, expressing opinion about one's job - pros and cons. • Famous composers, a biography note. Negative sentences. • Music genres, music instruments, music bands. • Festivals and concerts in German speaking countries. A schedule of musical events. • Planning a shared evening, inviting to a concert, writing a private email. • 'Rammstein' band - presenting a band. Providing argument support one's choice. Sentences with "denn", "weil", "nämlich" "deshalb". • German rock music - working with a video material. • Creating a presentation about German rock music. • Board games, tele shows Rules of favourite games. Passive voice. • E-commerce, internet shops. • Psychology of selling, interpreting the behaviour of the customer. Passive voice with modal verbs. • Consumers' typical behaviour during shopping. Identification of different behaviour. • Online shopping discussion - pros and cons. • Vocabulary related to finances. • Acquisition of new skills, upgrading one's qualifications, various course offers and certificates Noun's genitive. • Advanced ways of information searching, remote ways of providing education, education platforms. • Facilities found in a moder language lab. Prepositions of place. • Education system in Germany - a discussion forum. • Technical occupations, handling and description of technical equipment, manuals. Prepositions with dative and accusative. • Malfunctions and technical faults. Imperative. • Complaints - exchaning emails.

German A

K_U02, K_U06, K_U07

• Friendship, meetings, people relationships, relations. Declension - type 'n'. • Describing a person, introductions, characteristics of types of behaviour, features of character. • Presenting one's characteristic. Noun formation. • Reder's magazine - class reunions and locating classmates by internet. Working with a text. • Occupation and work, workplace, presenting one's flaws and strengths. • Talking about the past. Past tense (Präteritum) of regular, irregular and mixed nouns. • Report concerning the internship done. Presenting opinions regarding an employee. Conditions and forms of work. Requirements and competences. • Working with a video material. Conducted activities and working conditions. Presenting one's plans and professional plans. • Living conditions, an interview with a real estate agent. Relative pronouns and relative clauses. Presenting one's plans and professional plans. • Living conditions, an interview with a real estate agent. Relative profounts and relative clauses. Analysis of offers and notices, explaining abbrevations. Adverbials of time. • Living in Germany: informational text, statistics, graphs. • Customer service, phone conversations. Language reactions based on a given situation. • Oral and written complaint. Sentences with "obwohl" and "trotzdem" • Writing a formal letter with a set of fixed phrases. • Inviting to a company promotional meeting - working with a text. • Computerisation of everyday life. Functions of devices/appliances used nowadays and in the future. • Visions of technological progress of the future. Future I tense. • Using electronic devices in private and professional life - presentation. • Working with a video material - history and development of an enterprise, features of products and their distribution. • Formal and informal invitation. Conditional conjunction "falls". • Business meeting. Rules of participating in a meal and different professional and social situations. • Holiday plans, expressing wishes and intentions. Verbs: 'sollen'. • Media, Germany's press market. • Characteristics of a given magazine - presentation. • Shopping, slecting products, reacting to suggestions and propositions. Sentences with 'zu' before an infinitive. • Conversation between a client and consultant. Typical expressions. • Conversations between a client and consultant. Using typical professional expressions. Setting up a company and customer acquistion. • Choosing a profession. Determining one's own skills and abilities. Causative clauses. • Social competences and career choice test. Employment profiles. Time clauses with 'bevor' and 'während' conjunctions. • Describing personality and aptitudes, expressing opinions and presenting test results. • Miniproject professional predispositions, weak and strong sides of a candidate, talking with a careers adviser. • Working with a video material - history and development of Hueber publishing house, as well as its products. • Working conditions and concept of an employee-friendly enterprise. Gradation and declension of an adjective. • European Union - employment opportunities in EU countries, its history, as well as inner labour market and main institutions. • Smoking prohibitions in a work place - formulating arguments in favour and against, expressing opinions. Imperative. • Presentation structure, template, typical expressions. • Conditions determining good employment and company's attractiveness. • Wasted chances and opportunities. Unreal clauses in the past. • Reporting experienced failures - a radio audition. Conditional clauses - Konjunktiv II. • Helpline describing a given situation. 'Wäre / hätte' structures + Partizip II. • Describing controversial events - discussion and commentary. • Expressing disappointment and reacting to it - writing an e-mail, working with a text published on a blog. • Everyday situations that make you happy. Plusquamperfekt tense. • Expressing emotions - language means. • Summarizing the previous year and positive events. Time clauses with 'nachdem'. • Working with a video material - 'Our piece of happiness'. Family history. Important life areas, experiencing success and satisfaction. • Parties, celebrations, events happening in a workplace. • Beginnings of a career. Speed-dating. Employers' expectations. • Comparison of holidays and events. Written invitations for different occassions. • Writing an e-mail and letters - components. Writing invitations.

Russian (A)

K_U02, K_U06, K_U07

· Healthy lifestyle - reading comprehension, discussion. · Family celebrations - getting married and traditions connected with it. Reading comprehension and speaking activities. The use of pronouns gpyr gpyra. • State and church holidays - preparations; describing holiday customs. Coordinate clauses. • Evening at the theatre - a play review writing. Grammar: subordinate relative clauses; use of the который pronoun. • Mass - the role in daily life of modern society. Speaking: giving opinion on radio and TV programmes. • "Абитура на ура" - reading media comprehension tasks. • Popular professions and workplaces. Speaking: expressions of opinion about workconditions. Grammar: negative pronauns: никто, ничто. • Workactions connected with the professions. Speaking, grammar. Use of verbs:стать, работать (кет). • Writing of formal letters: CV and motivation letter. Grammatical constructions:несмотря на то, что • Work advertising - writing. Lexical exercises. Universities in Russia - rules and reasons for studying - discussion. Reading comprehension tasks. • Talking about working abroad - pro and contra arguments - discussion. • Interview for a job - dialogs. Grammar exercises: use of pronauns: сам, самый, • School trip - oferts - offers of travel agencies. Giving information. Grammar exercises: verbs: посетить/посещать • At the camp - main ewents. writing exercises. • Travel with train - announcement at the station. Grammar: noun путь - declination. • Meanse of transport - underground - positive and negative sites. Discussion. Reading comprehension • Visit in travel agency - negotiations about travel destination. Grammar: verbs - заказать/забронировать use; forms. • Writing of the formal letters to travels organizer. Lexical exercises. • Renting a flet - discription of the rooms. Reading comprehension tasks. • Houses to rent - advertisements, writing exercises. Short forms of adjectives. • Accidents during the travel, reading text, lexical exercises. • Daily routines and obligations in household - discussion, comprehensive tasks. • Speaking: partnership, woman and man in modern society. Writing exercises. • Generation gap - reasons. typical conflikts, sozial norms - discussion. Grammar - irregular verbs. • The history of life of famous writer M. Bulhakov - problems in his novels. Lexical exercises. • Our holydays. Writing of postcards. Verbs forms - grammar exercises. • Free time organization. Work with text " Отдых в современном обществе" - comprehension tasks. • Sport - emotion, sport spectacles. Lexical exercises. • Speaking: sportly life style - positive and negative aspects. • Natural environments destruction - reasons and consequences. Reading comprehension tasks. • Greenhouse effect and his consequences. How to protect our environment - discussion. • Speaking: visit at a restaurant ordering, menu analysis. Writing recipies. Grammar: imperative forms of verbs. • Speaking: Problems of school leavers in modern socjety. Work with text: Tpygoycrao" • Job offers - loan and workconditions. Graduating of adjectives - grammar exercises. • Doccuments connected with the job - writing applications for a job. • Use of business idiom - examples. • Taxes - kinds. Lexical exercises. • Advertisements - discription, visualisation of information. • Contract of employment - a model analysis; employees' duties. Contract of employment - writing exercises. Economy - definition, main ideas. Lexical and grammar exercises. • Economy reforms in Russia in the 1990s. "Рынок - не рынок" - reading comprehension. • The Russian Federation - administrative division, state institutions. Lexical exercises. • Russian economy policy. "Российский экспорт - импрт" - reading comprehension. • Enterprises - types and organization. Functions of enterprises - main branches, finances. Verb "заниматься" with gerunds. • Enterprise - legal status and general shaleholders meeting. • Profitability indicators - vocabulary. Grammar exercises. • International companies on the Russian market. "Окно на восток российского бизнеса" - reading comprehension, analysis, presentation, discussion. • Speaking: presenting companies - branches. • Advertisements - types, structure. Writing exercises. • Commercial documentation - orders, confirmation, simple covering letters. • Speaking activities

Russian (B) K_U02, K_U06, K_U07 • Appearance. • Features of character. • Asking for personal details. Processing and transferring information. • Ethical problems. Personal prononus with or without preposition. • Home products. Present tense. • Real estate, Nouns. • House renovations. Adjectives. • School requirements. Verbs: учиться, изучать. • Systems of educations in Poland and Russia. • School requirements. Prepositions в, на. • Occupations. Verbs related to different occupations. • Professional work. Temporary work. Labour market. Present tense. • Our portfolio. Writing a letter of motivation. Writing a CV. Nouns. • Family holidays. Naming holidays. Possesive pronouns. • Family members. Leisure time and reflexive verbs. • People and relationships. Adverbs of place and direction. • Food and its names. • Restaurants. Numerals 1,2,3,4 in junction with nouns and adjectives. • Describing diets. Expressing opinions. Demonstrative pronouns. Imperative. • Services: buying and saling. Verbs: купить/покупать. • Bank (types of payment). Main numerals. Nouns: рубль. • Products. Advertisements. Adverbs of level and measurement. Means of transport in Russia. Interesting places in Russia. • Travelling vocabulary. Naming and describing accommodation. Nouns ending -ий -ия. -ve. • Describing excursions and sight-seeing. Expressing opinions. Writing a blog. • Art genres (movies). Cinema genres. • Mass media. Present tenses. • Sport disciplines. Sport venues. • Sportsmen. Sport equipment. Comparatives. • Sport competitions. Nouns with adjectives. • Describing Addiction. Imperative. • Naming basic technical devices. Activities made with basic technical devices. • Computer and internet. Vocabulary. Wildlife. Naming plants and animals. Describing landscape. • Catastrophies and natural disasters. Adjectives. • Catastrophies and natural disasters. Adjectives. • Ecology. Describing activities related to protecting natural environment. • Russia. Country's structures and offices. • Social and international organizations. Present tense. • Economics. Inner and international conflicts. • Social life. cefa pronoun. gpyr gpyra expression. • Social problems. Vocabulary related to current social issues. • Master and Margaret. Reading comprehension. Life and work of Michael Bulhakow. • Mythology. Selected information concerning Slavian mythology. • Wasilij Kandinskij. Reading comprehension. • Iwan Szukszyn. Reading comprehension. • Russian fables. Nouns with adjectives. • Russian holidays. Naming and describing holidays. • Polish holidays. Naming and describing holidays.

3.4. Purification and analysis of biotechnological products, past time

3.4.1. Parameters of the study plan

79 ECTS
126 ECTS
5 ECTS
63 ECTS
4 ECTS
160 h.
9 ECTS
36 h.

Detailed information about:

- 1. the relationship between learning outcomes and modular learning outcomes;
- 2. key learning outcomes in terms of knowledge, skills and social competences, demonstrating their relation to the discipline / disciplines to which the course is assigned;
- the development of learning outcomes at the level of classes or group of classes, in particular related to the scientific activity conducted at the university;
- learning outcomes in terms of knowledge, skills and social competences leading to the acquisition of engineering competences, in the case of study programmes on completion of which the student is awarded a professional title of engineer / Master of Engineering;

can be found in the Module Activity Sheets, available at the following URL: http://krk.prz.edu.pl/plany.pl?Ing=EN&W=C&K=H&TK=html&S=1537&C=2020, which are an integral part of the study programme.

3.4.2.	Plan	of	study
--------	------	----	-------

Semester	Org.Unit	name of the subject	Lecture	Class	Laboratory	Project/ Seminar	Sum of hours	ECTS	Exam	Mand.
1	ZH	Technical safety and ergonomics	9	0	0	0	9	1	Ν	
1	СВ	Cell biology	9	0	0	0	9	2	Ν	
1	CN	General and inorganic chemistry	18	18	0	0	36	6	Т	
1	ZM	Academic savoir-vivre	6	0	0	0	6	1	Ν	
1	FF	Physics	18	18	0	0	36	6	Т	
1	CB	Genetics	18	9	0	0	27	4	Ν	
1	ZM	Social competences	6	9	0	0	15	2	Ν	
1	FM	Mathematics	18	18	0	0	36	6	Т	
1	ZE	Economic course	18	0	0	0	18	2	Ν	
Sums for t	he semest	er: 1	120	72	0	0	192	30	3	4
2	СВ	Cell biology	9	0	18	0	27	4	Т	
2	CN	General and inorganic chemistry	18	9	27	0	54	7	Т	
2	FF	Physics	9	9	9	0	27	4	Т	
2	CI	Engineering graphics	9	0	18	0	27	4	Ν	
2	FM	Mathematics	18	18	0	0	36	6	Т	

2	СХ	Packages of application software	0	0	18	0	18	2	Ν	
2	СВ	Computer science	9	0	18	0	27	3	Ν	
Sums for t	he semest	er: 2	72	36	108	0	216	30	4	4
2	CI	Chemical and histochnological equipment	10	0	0	0	26	4	N	
2			10	9		0	07	+ ~	т Т	
3	0.0		9	0	10	0	21	3		ŗ
3	CM	Biophysics	9	0	0	0	9	1	N	
3		Bioinformatics	9	0	10	0	18	2	N	
3			9	0	10	0	27	3		
3	CF		18	9	0	0	27	4		-
3	CM	Organic Chemistry	18	9	0	0	27	4	Т	
3	DJ	Foreign language	0	18	0	0	18	2	Ν	
3	CB	General microbiology	18	0	18	0	36	5	Т	
3	CB	Statistics and results elaboration	9	0	9	0	18	2	Ν	
3	DL	Physical education	0	18	0	0	18	0	Ν	
Sums for t	he semest	er: 3	117	63	81	0	261	30	4	4
4	CS	Biochemistry	18	0	18	0	36	5	Т	
4	CF	Physical chemistry	18	9	18	0	45	6	т	
4	СМ	Organic Chemistry	18	9	18	0	45	6	Т	
4	СВ	Scientific and technological information	0	0	1	0	1	0	N	
4	DJ	Foreign language	0	18	0	0	18	2	Ν	
4	СВ	In vitro cultures	9	0	9	0	18	2	Ν	-
4	CS	Industrial microbiology	18	0	18	0	36	5	Т	
4	СМ	Biomaterials processing	18	0	18	0	36	4	Ν	
4	DL	Physical education	0	18	0	0	18	0	Ν	
Sums for t	he semest	er: 4	99	54	100	0	253	30	4	4
5	CE	Instrumental analysis	18	0	27	0	45	5	N	
5	CS	Biocatalvsis	9	0	9	0	18	2	N	
5	CB	Molecular biology	18	0	18	0	36	5	т	
5	CN		10	0	0	0	27	4	т	
5	CB	Plant biotechnology	18	0	9	0	27	4	Т	
5			10	0	0	0	27	т о	N	
5	CI		10	9	0	0	21	3	IN	
5	DJ	Foreign language	0	18	0	0	18	2	N	
5	CB	Computer-aided research	0	0	9	0	9	1	N	
5	CB	Immunological techniques in biotechnology	18	0	18	0	36	4	N	
Sums for t	he semest	er: 5	117	27	99	0	243	30	3	3
6	СВ	Molecular biology	9	0	9	0	18	2	Ν	
6	CI	Bioreactors	9	0	9	0	18	2	Ν	
6	CI	Bioreactors II	0	0	9	0	9	1	Ν	
6	СВ	Enzymology	9	0	18	0	27	2	Т	
6	CI	Bioprocess Engineering	9	9	9	0	27	3	Т	
6	СВ	Genetic engineering	18	0	18	0	36	3	Т	
6	DJ	Foreign language	0	18	0	0	18	3	Т	
6	CF	Biomolecular processes modeling	18	0	9	18	45	6	Ν	
6	СМ	Drug design and synthesis	18	0	18	0	36	5	Ν	
6	CB	Toxicology	18	0	9	0	27	3	Ν	
Sums for t	he semest	er: 6	108	27	108	18	261	30	4	3
7	CI	Process safety	9	0	0	9	18	2	N	
7	CF	Biosensors	9	0	9	0	18	2	Ν	
7	CX	Chosen subject OA	9	0	0	0	9	1	Ν	
7	CI	Purification of biotechnology products	18	0	9	0	27	2	Ν	
7	CX	Professional training	0	0	0	0	0	4	N	
7	CX	Engineering project	0	0	0	72	72	11	N	
7		Process design	9	0	0	18	27	4	N	
/	CB	Proteomics and protein engineering	18	0	9	0	27	4	N	

Sums for the semester: 7	72	0	27	99	198	30	0	0
TOTALS FOR ALL SEMESTERS:	705	279	523	117	1624	210	22	22

Note that not being granted credits from the modules marked with a red flag makes it impossible to make an entry for the next semester (even if the total number of ECTS credits is lower than the permissible debt), these are modules continued in the next semester or modules in which failure to achieve all assumed learning outcomes does not allow one to continue studies in the modules included in the next semester's study programme

3.4.3. Elective modules

The following modules are an extension of the table from the chapter 3.4.2. They can be chosen by students regardless of their specialisation / education path.

Semester	Org.Unit	name of the subject	Lecture	Class	Laboratory	Project/ Seminar	Sum of hours	ECTS	Exam	Mand.
2	ZE	Fundamentals of economics	18	0	0	0	18	2	Ν	
2	ZO	Fundamentals of management	18	0	0	0	18	2	Ν	
3	DJ	English (A)	0	18	0	0	18	2	Ν	
3	DJ	English (B)	0	18	0	0	18	2	Ν	
3	DJ	French (A)	0	18	0	0	18	2	Ν	
3	DJ	French (B)	0	18	0	0	18	2	Ν	
3	DJ	German A	0	18	0	0	18	2	Ν	
3	DJ	German (A)	0	18	0	0	18	2	Ν	
3	DJ	Russian (A)	0	18	0	0	18	2	Ν	
3	DJ	Russian (B)	0	18	0	0	18	2	Ν	
4	DJ	English (A)	0	18	0	0	18	2	Ν	
4	DJ	English (B)	0	18	0	0	18	2	Ν	
4	DJ	French (A)	0	18	0	0	18	2	Ν	
4	DJ	French (B)	0	18	0	0	18	2	Ν	
4	DJ	German A	0	18	0	0	18	2	Ν	
4	DJ	German (A)	0	18	0	0	18	2	Ν	
4	DJ	Russian (A)	0	18	0	0	18	2	Ν	
4	DJ	Russian (B)	0	18	0	0	18	2	Ν	
5	DJ	English (A)	0	18	0	0	18	2	Ν	
5	DJ	English (B)	0	18	0	0	18	2	Ν	
5	DJ	French (A)	0	18	0	0	18	2	Ν	
5	DJ	French (B)	0	18	0	0	18	2	Ν	
5	DJ	German A	0	18	0	0	18	2	Ν	
5	DJ	German (A)	0	18	0	0	18	2	Ν	
5	DJ	Russian (A)	0	18	0	0	18	2	Ν	
5	DJ	Russian (B)	0	18	0	0	18	2	Ν	
6	DJ	English (A)	0	18	0	0	18	3	Т	
6	DJ	English (B)	0	18	0	0	18	3	Т	
6	DJ	French (A)	0	18	0	0	18	3	Т	
6	DJ	French (B)	0	18	0	0	18	3	Т	
6	DJ	German A	0	18	0	0	18	3	Т	
6	DJ	German (A)	0	18	0	0	18	3	Т	
6	DJ	Russian (A)	0	18	0	0	18	3	Т	
6	DJ	Russian (B)	0	18	0	0	18	3	Т	
7	CF	Bioinorganic chemistry	9	0	0	0	9	2	Ν	
7	СВ	Cell signalling	9	0	0	0	9	2	Ν	
7	CN	Remediation of toxic substances in environmental material	9	0	0	0	9	2	N	
7	CB	Molecular taxonomy	9	0	0	0	9	2	Ν	
7	CS	Application of biotechnology in modern therapy	9	0	0	0	9	2	Ν	

3.4.4. Verification methods of learning outcomes

Detailed rules and methods for the verification and assessment of learning outcomes that allow all learning outcomes to be verified and assessed are described in the Module Activity Sheets. Within the framework of a study programme, verification of learning outcomes is carried out in particular by means of the following methods: written, exam part practical, exam part oral, written pass, pass a part practical, oral pass, essay, colloquium, written test, observation of performance, portfolio, project presentation, written report, oral report, project report, written test.

Detailed information about the verification of learning outcomes achieved by students can be found in the Module Activity Sheets at the URL address: http://krk.prz.edu.pl/plany.pl?lng=EN&W=C&K=H&TK=html&S=1537&C=2020

3.4.5. Programme content

Programme content (educational content) is consistent with the learning outcomes and takes into account, in particular, the current state of knowledge and research methodology in the discipline or disciplines to which the course of study is assigned, as well as the results of scientific activity in this discipline or disciplines. A detailed description of the program content is available in the Module Activity Sheets at the URL: http://krk.prz.edu.pl/plany.pl?lng=EN&W=C&K=H&TK=html& S=1537&C=2020, which are an integral part of the study programme.

Academic savoir-vivre	K_W15, K_U06, K_K03
 Principles and norms of behavior in interpersonal relationships. The or universal rules of the etiquette.Personal culture.Importance of good m image. Classic savoir-vivre rules Fundamentals of priority and principle exceptions. Titles in the academic environment.Personal and bu congratulations.Faux pas. Communication etiquette. Standards of good Telephone conversation label. Culture of correspondence.Network. Elega image. Savoir vivre a choice of dress. General dress rules. Clothing accesselection of individual elements of the outfit.The right outer appearance a 	rigin of the concept of etiquette. Legal and moral norms and custom. The lorals in private and professional life.Stereotypy.Good manners and the es of its application. Forms of showing respect. Welcome - the rules and usiness procedures.Preferred - rules and exceptions. Wishes and od behavior in interpersonal communication. Non-verbal communication. ance of public speaking. • The importance of clothing in creating a positive essories. Fashion and extravagance.The most frequent weaknesses in the as part of the positive image.
Analytical chemistry	K_W04, K_U06, K_K01, K_K03
Classification of analytical chemistry, scale, accuracy and precision scheme of quantitative analysis. Classification and characteristics of n Alkacymetric. Reductometry and oxidimetry. Complexometry. Precipita calculations and analyses in the field of volumetric and gravimetric m Redox: determination of Fe(II) in Mohr's salt, determination of Cu(II) concentrations. • Precipitation analysis: determination of Cl- ions conce gravimetric methods.	of a method. Analytical errors, statistical evaluation of results. General methods of chemical analysis. Theoretical basis of volumetric analysis. tion analysis, effects accompanying solid product separation. Chemical lethods. • Alkacymetric: determination of sulphuric acid concentration. • concentration • Complexometry: determination of Ca(II) or Mg(II) ionic entration. • Chemical calculations in the field of volumetric analysis and
Biocatalysis	K_W08, K_W10, K_W14, K_U03, K_U19, K_K01, K_K03
enzyme composition • enzymatic mechanisms • enzyme kinetics; • enzymatic processes	enzyme immobilisation • industrial enzymatic processes; samples of
Biochemistry	K_W05, K_W14, K_U06, K_U09, K_U15, K_K01, K_K03
Basic aspects of the protein structure and function. Myoglobin and he Enzyme kinetics and inhibition. Control of enzyme activity. • Carbohyd Glycoproteins. • Lipids. Structure of cell membranes. Mechanisms of transduction in cell. • Transduction of genetic information in cell. DNA s Identification of amino acids and proteins by specific colour reactions an simple sugars and polisaccharides by colour reactions. Hydrolysis of Hydrolysis of starch. • Isolation of cholesterol from a chicken egg yol nitrate(III) levels in meat products with the Grieass reagent. • Metabolis and gluconeogenesis. • Cellular respiration and energetics: citric a determination of superoxide dismutase (SOD) activity from the yeast Sar gel electrophoresis and negative staining. • Native gel electrophoresis and filtration. • Separation of lysozyme from chicken egg by ion-exchange chi	emoglobin. • Introduction to enzymes. Factors affecting enzyme activity. rates: monosaccharide, oligosaccharide and polysaccharides structures. f transport across cell membranes. • Membrane receptors and sygnal structure and replication. RNA synthesis and splicing. Protein synthesis. • d TLC method. • Determination of protein concentration. • Identification of sucrose. • Separation of amylose and amylopectin from potato starch. k. Identification of cholesterol by Salkowski method. • Determination of sm: organisation and basic ideas. • Carbohydrate metabolism: glycolysis acid cycle, oxidative phosphorylation, photosynthesis. • Isolation and ccharomyces cerevisiae. • Identification of superoxide dismutase by native nd identification of LDH isoenzymes. • Isolation of macromolecules by gel romatography. • Identification of lysozyme by SDS-PAGE electrophoresis.
Bioinformatics	K_W01, K_W03, K_W14, K_U01, K_U02, K_U06, K_U08, K_U09, K_U10, K_K01
Introduction to bioinformatics. Basic concepts. E-learning in biotechn Computer representation and visualisation of biopolymer structures bioinformatics • Integrated sequence search system • 3D visualisation and	ology. • Data mining methods in bioinformatics • Sequence alignment • • Bioinformatic databases • PCA and cluster analysis methods in id analysis of protein in PDB database
Biomaterials processing	K_W04, K_W10, K_U16, K_K01
 Classification of polymers. Basic definitions for polymer chemistry:mol Polymerization classifications • Technological metods of polymerization polyolefins. Hydrogels - fabrication and properties. • Ceramic biomaterial biomaterials technology • Alumina in bone surgery and dentals. Ma hydroxyapatite. • Methods for the preparation and properties of porous of Technology and properties of metallic biomaterials. Technology and properties of selected polymeric biomaterials. • Preparation and characterization of se 	ecular mass, polymerization degree, space building. Polyreactions types. : mass, solvent, suspensions and emulsion. Polyurethanes, polyamides, Is - introduction. Classification of ceramic biomaterials. Outline of ceramic anufacturing of alumina biomaterials. Manufacturing and properties of ceramic biomaterials • Technology and properties of carbon biomaterials . perties of the composite biomaterials • Preparation and characterization of lected ceramic biomaterials.
Biomolecular processes modeling	K_W03, K_W14, K_U01, K_U08, K_U19, K_K01, K_K03
• Main conceptions of biomolecular modeling. Fundamentals of molecula Carlo method. Molecular forces: covalent, electrostatic, hydrogen and hy methods, semi-empirical methods, DFT method, hybrid methods. Metho biomolecular bases. Elements of homological analysis . Phylogenetic a modeling of protein structure (primary, secondary, tertiary and quaternar analysis of biological systems. Study of reactivity by quantum chem thermodynamics. Application of molecular modeling methods in studies chemical reactions and transition states, spectroscopic spectra. Molecul receptor interaction. Biomolecular modeling in the design of pharmacop 3D-QSAR, 4D-QSAR, 5D-QSAR, 6D-QSAR). Kinds of structural indexe their applications in biotechnology. • Data bases of structural proteins in Minimization energy in peptides and proteins. Modeling of protein stru Examination of structure-activity relation (QSAR) Quantum chemistry inv sun filters. Study of reactivity of enzyme systems, modeling of chemical assigned computational design.	ar modeling methods: molecular mechanics, molecular dynamics, Monte /drophobic interactions. Basics of molecular quantum mechanics: ab initio ods of optimization of molecular geometry. Biotechnological bases, other analysis in proteins. Protein modeling: amino acids, peptides, proteins – y structure). Application of molecular modeling methods in conformational istry methods. Computer modeling and study of reaction kinetics and of active site reactivities of biochemical (enzymatic) systems, modeling of lar docking: docking methods and algorithms, scoring functions of ligand- phores. Quantitative structure-activity relation QSAR methods (2D-QSAR, is and techniques of their calculation. CoMFA and CoMSIA methods and biomolelular modelling. Homology and phylogenetic analysis of proteins. restigation of antioxidative properties of flavonoids. Computer modeling of reaction and its transition states. Molecular docking. • Carrying out of the
Biophysics	K_W02, K_U06, K_K01
• The bases of the biophysics. Classification of biomolecules. Classific molecules structure. Interactions of molecules and macromolecules. • M biopolymers:- the method of light scattering statistically (Rayleigh), dyna method of sedimentation, MALDI-TOF, Gel Permeation Chromatograph systems and processes. Phase transitions. Entropy , enthalpy, free em mass transportation, viscosity of polymers. Thermal analysis method temperature-modulated DSC, TMA, thermal conductivity. • The chosen spectroscopic (IR, spectroscopy Raman, NMR), X-ray spectroscopy (techniques: optical microscopy, electron microscopy, atomic force micro proprieties of polymers (dynamic mechanical analysis -DMA). Mechanic hearing system; visual system, respiration system, the circulation blood temperatures and moisture, the electric and magnetic field; the radiation	cation of biomacromolecules (biopolymers). Chemical structures. Super- ethods of the determination of molecular masses and their distribution for mics (quasi-elastic) - the viscometery, osmometery, bulio- and cryoscopy, by (GPC) or Self-Exclusion Chromatography (SEC). • Biothermodynamic ergy, heat capacity biopolymers. The phenomena of thermo conductivity is for examination the thermal proprieties of biopolymers: TGA, DSC, physical methods for the investigations of the structure of biopolymers: SAXS, WAXS), degree amorphous and crystalline phases. Microscopic oscopy (AFM). Static and dynamic methods to determine the mechanical al modules. • The elements of the biophysics of organs: the sense of the system. The influence of physical factors on alive organisms (mechanical, ionizing and non-ionizing). Spectroscopy and scanning, topography NMR.
Bioprocess Engineering	K_W10, K_W19, K_U12, K_K01
Heat Transfer: (Fixed) Stationary Heat Transfer, Heat Transfer Driving Thermal Conduction Coefficient, Heat Non- And Conductors, Thermal Newton Equation, Heat Transfer Cases, Criterial Numbers And Equatio Overall Heat Transfer, Newton Equation for Overall Heat Transfer, Over Basis Of Heat Exchanger Design. Mass Transfer: (Fixed) Stationary Ma	Force, Kinds of the Heat Transfer: Thermal Conduction, I-St Fourier Law, Conduction Across Wall, Heat Transfer Resistance, Heat Convection – ns, Heat Radiation, Heat Screen Meaning, Heat Losses to Environment, erall Heat Transfer Coefficient, Some Cases of Transient Heat Transfer, ass Transfer, Driving Force, Mass Diffusion, I-St Fick Law, Mass Diffusion

Coefficients, Mass Transfer Resistance, Kinds of the Mass Diffusion, Mass Diffusion, Mass Convection, Newton Kinetic Equation, Mass Transfer Cases, Criterial Numbers And Equations, Overall Mass Transfer, Newton Equation for Overall Mass Transfer, Overall Mass Transfer Coefficient, Disappearance of Mass Transfer Resistance, Overall Mass Transfer Driving Force, Basis Of Mass Exchanger Design. Concurrent Heat and Mass Transfer - Basic Knowledge Absorption; A) Process Definition, B) Static's of the Process - Absorption Equilibrium, Kinds of the Equilibrium Line Notations, C) Process Kinetics, Mass and Overall Mass Transport in the Absorption, D) Mass Balance of the Absorption, Operation Line of the Absorption, Minimum of the Spraying Liquid Mass and Velocity, E) Overall Mass Transfer Driving Force int Absorption, F) Dynamic Model of the Absorption Chemisorption. • Distillation And Rectification: Points A) to F) Analogous to the Same Above with the Following Differences: Distillation Equilibrium for Binary Component System, Kinds of the Equilibrium Line Notations - for Ideal System - Raoult Law, Nonideal Systems Aberrations From Raoult Law, Azeotropes, Differential Distillation, Equilibrium Distillation, Mass and Overall Mass Transport in the Rectification Batch Rectification, Continuous Rectification, Heat and Mass Balances of the Rectification, Heat and Mass Balances of the Operated Plate, Operation Lines of the Rectification, Minimum and Maximum Minimum of the Column Reflux, Column Efficiency Measured by Theoretical Plate Amount. Exstraction: Points A) to F) Analogous to the Same Above with the Following Differences: Extraction Equilibrium for Ternary Component System, Ideal System - Nernst Law, Nonideal Systems - Aberrations From Nernst Law, Stepping Extraction Parallel-Current and Counter-Current Extraction, Minimum and Maximum of the Extrahent Mass, Kinds of the Mathematics Solution of the Mentioned Above Extraction Cases, Column Extraction, Dynamic Model of the Column Extraction. K_W07, K_W11, K_U15, K_U19, K_K01 Bioreactors

 Definition of bioprocess engineering. Stoichiometry of microbial growth enzymatic reactions. Bioreactors: batch reactor, chemostat, chemostat column reactors, fluidization reactors, membrane reactors. Designing of 	h, oxygen balance. Kinetics of cells growth, product formation, kinetics of t with recycle, multistage chemostat systems, plug flow reactor, bubble- bioreactors. Scaling-up and scaling-down.
Bioreactors II	K_W07, K_W11, K_U09, K_K02
Designing of real bioreactors of different types with taking into account the kinetics of bioreaction and mass and heat transfer.	
Biosensors K_W10, K_U06, K_K01	
Classification of chemical sensors. Theoretical basics of chemical re conductometric sensors. • Optical sensor, physics of optical fibers, optica of piezo- and pyroelectricity, chemical layers of mass sensors. • Therm chemical sensors in industrial analytical control, clinical chemistry and er	cognition. • Electrochemical sensors - potentiometric, amperometric and al fiber sensors – design, operation and examples. • Mass sensors, basics al sensors - pyroelectric sensors, gas catalytic sensors. • Applications of nvironment protection. Prospects of development of chemical sensors.
Cell biology	K_W05, K_W14, K_U06, K_U09, K_U15, K_K01, K_K03
 Similarities and differences in structure of prokaryotic and eukaryotic cells. Basic research methods applied in studies of cell and it components. Evolution and function of subcellular structures. Mechanisms of cell membrane transport. Signal transduction in the cell. Ce cycle and course of mitosis and meiosis. Basic laboratory methods and safety rules and regulations. Microscopic observations of cells an tissues. Isolation of chloroplasts and mitochondria from the plant cells. Separation of chlorophylls and carotenoids be thin layer chromatography. 	
Chemical and biotechnological equipment	K_W11, K_W13, K_U17, K_K01

• Classification of chemical apparatus. Fundamentals of transport phenomena of heat and mass momentum. The nature of the fluid flow. Fluid flow resistance. Liquid outflow from the tank • Apparatus for mixing, aeration and disintegration of biomass. Demand for mixing power. • Bioreactors and fermenters - construction solutions and the principle of operation. Bioprocesses in fluidised bed. • Characteristics of comminuted materials. • Slurry separation by deposition, sedimentation, flotation, classification. • Filtration and spinning of biological suspensions, process rules and apparatus. • Heat exchangers, evaporators and sterilizers. • Apparatus for absorption and adsorption. • Apparatus for distillation and rectification. • Apparatus for extraction and crystallization

 Computer science
 K_W03, K_W14, K_U02, K_U08, K_K01

 • Definitions of basic concepts: the algorithm, computer program, computer system, informatic system, the operating system. The main components of a computer and their functions. Multiprocessor computer. • Operating systems and their types. Computer programs, utilities and tools. MS-Office programs: Word, Excel, PowerPoint. • Computer viruses, protection and prevention. Computer networks (Internet, Intranet). Telecommunications systems. Websites construction. Legal, ethical and social issues of computer science. • Representation formalisms of algorithms: data flow diagram, program flow diagram. Computer program development cycle: specification, design, coding, testing, documentation.

 • The basic elements of the configuration of software environment and compiler for Turbo Pascal. • 7.0. Construction of programs and units in Pascal. Declaration and implementation section of the unit. Data types defined in Pascal. • Main control statements in Pascal. Static and dynamic variables. Computer memory management. Programming of branches and loops. The definition of procedures and functions. Program testing according to principles of software engineering. • The Windows operating system. Searching for information on the Internet. Internet-based education. • Microsoft Office package: Word, Excel, PowerPoint. Development of laboratory data. Preparing of presentation. • Chemical structure editors. • Getting to know the skeletal program TEST.PAS. Preparation of the project, the development of the algorithm, implementation of project documentation. Acceptation of the student's project.

Computer-aided research	K_W03, K_U01, K_U06, K_U08	
• Strategies of searching chemical structures and metabolic databases • Computer database of protein families • CAOS - computer prediction biodegradation pathways for chemical compounds and generation of combinatorial libraries • Computer design of new drugs • Chemical similarity		
Drug design and synthesis	K_W10, K_W12, K_U16, K_U17, K_K03	
 Drug from the idea for the implementation: Leading Structure - search; relation between the structure and the activity of the drug Pharmacokinetics; QSAR; Combinatorial Synthesis. Laboratory: chosen methods of synthesis of drugs. • Definition of the medicine/drug, stages c seeking the medicine, choice of the site of action of the medicine, choice of the biological assay, seeking the leading structure. • Synthesis on the 		

solid phase - bases and assumptions. • Combinatorial synthesis - idea, methods. • Isolation and purification of the active ingredient, elucidation the structure of the active compound. • Pharmacophore, isostere - definition, examples. • Synthesis of the most populardrugs e.g. prazole, antibiotics, betablockers and statins. • Elements of strategy of planning the synthesis of new potential drugs. The most popular types of the reaction used in the synthesis of medicines/drugs in including analysis of the applied synthesis in the pharmaceutical industry. • Written passing the subject. • Performing five laboratory exercises from the area of the isolation, the synthesis and analysis of medical products during of 5 lesson according to instructions placed on sd of the coordinator, before beginning of the cycle classes.

Engineering graphics	K_W03, K_W14, K_U02, K_U06, K_K01	
• Technical charts, project views with Monge's method, perspective pictoriali • sections. • Dimensioning • Drawing of various joints. • Tolerances, fits in mechanical engineering. Description of microstructure on machine element surfaces. Assemble drawing and drawing of elements. • Standardized graphical symbols apparatus and equipment used in the processes of chemical technology • Reading the documentation.		
Engineering project	K_U01, K_U03, K_U04, K_U06, K_U08, K_U09, K_U10, K_K01, K_K04	
• Getting to know the professional literature on the subject • Experimental measurements, the creation of a computer program or other work related to the use of research tools that are appropriate to the studied area and educational profile. Development of research results in the form of a written report. • Discussing how to prepare a multimedia presentation, rules for presenting papers. Presentation of the diploma project. Discussions after the multimedia presentation of the results of own research presented by students.		
Environmental protection and biotechnology	K_W14, K_U03, K_U19, K_K02, K_K05	

• Definitions and fundamental phrases. Environment, environment protection, ecology, ecological impact, system, ecosystem, paradigm, civilization. Elements of theory of systems. Reductionism versus holism in reality description and understanding. Micro- and macro-explanation concept. Soft and hard technologies. • Ecological equilibrium. Elements of ecological equilibrium of Earth. Energy balance of Earth. Cycles of chemicals in the environment. Circulation of matter (H2O, CO2, N2, O2, heavy metals) and energy. Populations and their features. Agglomeration

process, dissipative structures. Agriculture and ecology. Contamination caused by farm plant and animal production. Soil components and their transformation. Degradation and protection of soils. Biological sewage and waste water purification. Importance of fuels and energy in agriculture economy. • Chemical inorganic and organic pollutants in environment and their biological and medical action. Chemical inorganic and organic pollutants in environment and their biological and medical action. Classifications and systematics of pollutants. Inorganic and organic persistent pollutants, their scattering, bioaccumulation, toxicology (enzyme dysfunction, heme biosynnthesis disfunction, oxidative phosphorylation inhibition narcosis, DNA modification), and hormone-like activity.Tobacco smoke as a pollution agent. Purification of liquid waste by means of defined bacteria cultures. Ecological validation of marketable washing powders. • Toxic metals and organic pollutants level in air, water, soil and food as an indicator of environment quality. System approach to calculation and conversion of different solution concentration expressions and units especially for applied in ecology and in medical analytical chemistry. Determination of toxic metals as Hg, Cd and Pb in biological and environment samples. Determination of soil quality parameters. Tests and ecological validation of common plastics. • Energy production and ecology in XXI age. Ecological valuation and economy of applied energy sources. Renewable sources of energy. Biomass and bio-fuels. Soft technologies rising up on the basis of solar energy as wind, solar collectors, heat pumps etc. Solar economy and possibility of solar age. Thermal and photovoltaic technology applications of solar energy. The passage to the Solar Age and its political, legislative and tax limitations. Geothermic energy as a large scale energy source of growing importance. Ecological validation of marketable sources of light. Analysis of thermal solar energy home set with solar collector. Analysis of photovoltaic solar energy home set. • Wastes disposal. Wastes in nature technologies in comparison to that in man's technologies. Characteristics of wastes generated by power industry and other kinds of industry. Environmentally hazardous products. The life cycle assessment approach and ISO standards.. Waste management in local communes. An overview of waste utilization methods. Waste combustion. Ecological and ethical aspects of chemical production. • Current ecological problems. The current ecological problems of Poland and UE. Look over of environment friendly technologies and biological methods of environment protection. Environment legislation in Poland and UE. The problem of ecological taxes K W08 K W14 K LI06 K LI09 K LI15 K K01 K K03

Enzymology	K_1000, K_1014, K_000, K_009, K_015, K_K01, K_K05
Construction of enzymes, mechanism of action, reaction kinetics • Tech	niques for enzyme analysis • The use of enzymes in biotechnology
General and inorganic chemistry	K_W04, K_U06, K_K01, K_K03

Struture of atom. Periodicity of chemical properties. Ionization energy, electron affinity, electronegativity. Metal and non-metals. Chemical bonds. Covalent bonds. Formal oxidation state. Molecular orbital and valence bond theory. States of matter. Phase transistions. Gas state. Ideal gas state equation. Units of matter. Solid state. Ionic and molecular crystals. Liquids and solutions. Units of concentration. Chemical equilibrium. Mass action law. • The basic calculations: fundamental laws. Concentration of solutions: way of expression, conversion of concentration, dilution and mixing of solutions. Stoichiometric calculations based on chemical reaction equation. Elemental and real chemical formula. Yield of reaction. Oxidation and reduction reactions. Gas laws. Chemical static, mass action law, chemical equilibrium. • 1. Liquids and solutions. Colligative properties. 2. Electrolytes. Electrolytic dissociation. Strong and weak electrolytes. 3. Acids and bases. Ampholytes. Buffer solutions. 4-7.
Properties of elements. Inorganic compounds, preparation methods end properties. 9. F-block elements. 10. Complex compounds. Additional compounds. • 1. Electrolytic dissociation of strong and weak electrolytes. Activity and activity coefficient, ionic strength, ionic product of water, pH. 2. Dissociation constant and degree. 3. Buffer solutions. 4. Hydrolysis, the hydrolysis constant and degree. 5. Solubility product. • 1. Basic laboratory operations and equipment. Synthesis of inorganic compounds. 2. Classification of inorganic compounds. 3. Types of chemical reactions. 4. Solutions: preparation networks. 5. electrolytic degree and constant, pH, alkacymetric indicators. 6. Buffer solutions. 5. electrolytes - electrolytic degree and constant, pH, alkacymetric indicators. 6. Buffer solutions. 5. Hydrolysis - the hydrolysis constant and degree. 9. Precipitation, dissolving and chemical reactions. 4. Solutions: 7. Inorganic complexes. 8. Hydrolysis - the hydrolysis constant and degree. 9. Precipitation, di

General microbiology	K_W07, K_W14, K_U06, K_U09, K_U15, K_K01, K_K03
• The structure and function of prokaryotic cells • Metabolic diversity of r	nicroorganisms • Bacterial secondary metabolites and their importance in
the environment • The role of microorganisms in biogeochemical cycles	· Interaction of microorganisms · The basic microbiological techniques ·
Isolation and preliminary identification of microorganisms	

Genetic

nginopring	K_W06, K_W09, K_W12, K_W14, K_U06, K_U09, K_U15, K_U19,
engineering	K_K01, K_K03, K_K07

• Methods for obtaining DNA fragments: cutting the genomic DNA with restriction enzymes, chemical synthesis, reverse transcription, polymerase chain reaction (PCR). The use of these fragments for various purposes in molecular genetics. Molecular cloning of genes in prokaryotic and eukaryotic cells. Plasmid vectors, cosmids, phage vectors, shuttle vectors, YAC (yeast artificial chromosome). Construction of vectors: restriction enzymes, ligation. Mechanisms for obtaining transgenic organisms: transformation, transduction, transfection. Techniques for analysis and identification of transformants. Expression systems in bacteria and eukaryotic cells. Manipulation of gene expression. Controlled in-vitro mutagenesis. Techniques for transgenic plants and animals. Purification and identification of the recombinant proteins obtained by different methods of analysis: affinity chromatography, electrophoresis and immunoblotting, mass spectrometry. • Evolution of NCBI model. Understanding the diversity of DNA sequences deposited in the databases. Finding and selective use of information in planning experiments. Designing PCR primers for the selected sequence and in any orientation, with attached restriction sites occurring at the start and stop codons for protein domains. The construction of restriction map, characterization of restriction enzymes. Cloning without the use of restriction enzymes. Codon optimization. Designing SNP detection methods (PCR-RFLP, minisequencing) • Application of the techniques of genetic transformation of bacteria on the discriminating medium. The chemical transformation and electrotransformation. Isolation of colonies containing cloned gene. Preparation of competent bacteria and plasmids for transformation.

Genetics	K_W06, K_W14, K_U03, K_U06, K_U09, K_K01, K_K03
• Rules of inheritance, discoveries of Mendel, Morgan, basis of the quantitative and population genetics • The structure of DNA and organization genetic material • Mutations, chromosomal aberrations, aneuploidy, polyploidy • Genetic crosses, determining the phenotype of offspring an parents, including prediction of Blood type and genetic diseases in humans and prediction of the outcomes of breeding procedures in plants an animals	
Immunological techniques in biotechnology	K_W05, K_W09, K_W14, K_U06, K_U09, K_U15, K_U17, K_K01, K_K03

• Structure of animal and human immune system, lymphoid organs – primary and secondary, cytokine receptors and their properties, complement system • Antigens and the mechanisms of their identification. Characteristics of innate and acquired immunological response mechanisms. Mechanism of receptor activation in B and T cells by an antigen: antigen processing and presentation • Signal transmission between the components of immune system, structure of the immune system T cell receptors • In vivo production of monoclonal and polyclonal antibodies. Obtaining monoclonal antibodies using the method of in vivo and in vitro immunization, and the method of genetic engineering • Methods of the qualitative and quantitative evaluation of detectable macromolecules, using the ELISA method, immunoprecipitation, immunobloting, flow cytometry • The use of recombinant antibodies in a diagnosis and therapy. Classic and recombinant vaccines

In vitro cultures	K_W14, K_U06, K_U09, K_U19, K_K03
Definition of plant in vitro culture. Application of plant in vitro culture • Or Methods of terilization for glasware, media, tool. • Media used in plant in plant hormones, aminoacids, sugars, geling agents). Composition an secondary explants. Sources of primary explants. Methods of primary exp technological application of in vitro culture. • Kallus culture: induction, application. • Root culture. • Application of in vitro culture in obtainig v dihaploids. • Isolation, culture and fusion of plant protoplasts. • Work saf equipment. • Preparation of medium for carrot callus induction. • Induc micropropafation of wild strawberry • Transpantation of wild strawberry m	rganisation of in vitro culture laboratory: equipment, rules of sterile work, • vitro culture: types of media, ingredients (macro- microelemets, vitamins, d preparation of Murashige nad Skoog medium 1962. • Primary and palnts harvesting. • Organogenesis in in vitro culture. Micropropagation as maintenance, application. • Suspension culture: induction maintenance, virus free plants. • Anther culture. Microspore culture and production of ety • Rools of sterile work in plant in vitro culture laboratory. Operetion of tion of calli from primary explants of carrot • Preparation of medium for icroplants • Isolation of mature rye embryos.
Industrial microbiology	K_W07, K_W10, K_U12, K_U18, K_U19, K_K01

• Biological and technological criteria for the classification of microorganisms used in the industry • Methods for the isolation of microorganisms for industrial use from environmental samples and optimization of conditions in laboratory culture • The correct use of terminology in the field of naming microbiological • Secondary metabolites as precursors and products of specific biosynthesis • Fermentation processes and their implementation on an industrial scale • Mechanisms of xenobiotics biodegradation • Microbiology of food • Techniques for isolating microorganisms for industrial use from the environmental samples • Screening tests of proteolytic microorganisms in a laboratory • Methods for improving production characteristics of industrial microorganisms

Instrumental	analysis
--------------	----------

K_W04, K_W10, K_U16, K_U17, K_K01

· Analytical process, its elements and statistical evaluation of each step. Analysis of elements and compounds by spectroscopic methods. Atomic Emission Spectroscopy - basis of the method, methods of sample atomization and excitation, applications. Atomic absorption spectroscopy Molecular spectroscopy in the ultraviolet and visible light. Infrared spectroscopy. Spectra recording techniques, methods of quantitative and qualitative analysis. Fundamentals of nuclear magnetic resonance spectroscopy. The quantitative and structural analysis based on the NMR spectra. Fundamentals of mass spectrometry. Interpretation and application of analytical mass spectra for organic compounds. Chromatographic methods for separation of mixtures. Basic principles and classification. Theoreticasl basis of separation process. Retention mechanisms and parameters. Separation efficiency. Definition and determination of resolution index, theoretical plate number, selectivity factor. Separation techniques in liquid chromatography - adsorption chromatography, partition - normal/reverse chromatography, ion-exchange chromatography , gel filtration chromatography. Selection of the chromatographic conditions - rules for the selection of the stationary and mobile phases. High Performance Liquid Chromatography HPLC and thin-layer HPTLC. Isocratic and gradient techniques, instrumentation. Gas chromatography. The rate theory of chromatography - band broadening, column efficiency. Optimization of column performance. Chromatographic methods of qualitative and quantitative analysis. Potentiometric methods. Design, operation and application of the selected ion-selective electrodes. Conductometry and its analytical application. Voltammetric methods - linear-sweep LSV, cyclic CV, and stripping CSV, ASV techniques. Quantitative and qualitative analysis. Selected applications in analytical laboratory and industrial applications, criteria for the method selection. • Identification of components in the mixture of hydrocarbons and their determination by gas chromatography GC. Determination of hydrocarbons and their derivatives using HPLC. Analysis of the composition of mixtures of organic compounds using a GC-MS. Identification and a quantitative analysis by IR spectroscopy. Determination of the concentration of substances by the UV-VIS spectroscopy. Structural analysis on the base of 1H-NMR spectra. Determination of the element content in the solutions by atomic absorption spectroscopy (AAS). Polarimetric determination of sucrose in aqueous solution. Quantitative determination of elements by cyclic voltammetry CV. Determination of iodide and chloride by potentiometric precipitation titration. Determination of the concentration of the phenol by conductrometric titration method.

Mathematics

K_W01, K_U06, K_K01

• Elements of mathematical logic and set theory. Basic properties functions of one real variable, polynomials, Horner's scheme, rational functions and other elementary functions, arc functions. • Sequences of numbers: monotonicity and boundedness of sequences, limit of a sequence, theorems about existence of a limit, Napierian base and its applications. Series of numbers: properties of series of numbers, tests for convergence of series, tests for divergence of series. Limit and continuity of function of real variable: definitions of limit, counting properties of limits of functions, notion of continuity of a function. Asymptotes of a function. • Test based on the materials covered during lectures and tutorials. • Differential calculus of function of one real variable: notion of derivative of function, derivatives of higher order, derivatives of basic elementary functions, derivative of composite function, De l'Hospital's theorem, mean value theorems, investigation of monotonicity and determination of extrema of functions, convex and concave functions, points of inflexion of graph of function, investigation of the behavior and systematic procedure in graphing of function. • Integral calculus of function of one real variable: notions of primitive function and indefinite integral, integration by parts and by substitution, integration of rational functions, integration of irrational functions, integration of trigonometric functions. Notion of definite integral, applications of definite integrals, improper integrals. • The set of complex numbers: canonical and polar form of a complex number, de Moivre's formula, calculation of power and root of complex numbers. • Matrices: definition, operations on matrixes and its properties, square matrices, determinant and its properties, inverse matrix, rank of a matrix. Systems of linear equations: Kronecker-Capelli's theorem, Cramer's systems. Ordinary differential equations: notions of general solution and particular solution, initial-value problem, ordinary differential equations of first-order (about separable variables, linear, homogeneous respect to x and y, linear), ordinary differential equations of second-order reducible to equations of first-order, linear equations. • Test based on the materials covered during lectures and tutorials. • Elements of calculus of vectors and analytic geometry: vectors, operations on vectors and its properties, scalar product of vectors and its properties, vector product and triple scalar product of vectors, equations of a plane and of a straight line in the space. • Basic properties of function of several variables: limit and continuity of functions of several variables, partial derivatives, extrema of functions of several variables. Elements of field theory: scalar and vector fields, gradient, divergence, rotation, potential of vector field. Double and triple integrals - basic concepts.

Molecular biology

K_W05, K_W06, K_W14, K_U06, K_U09, K_K01, K_K03

• Basic terminology in the field of molecular biology. Differences in the structure of genetic information between pro and eucariots. Introduction to labolatory procedures - isolation of nucleic acids. • Plasmids: structure, replication, biological function, transfer of information between cells, resiatance to unfavorable environmental conditions like antibitics, heave metal ions, sulfonamids, phenol and its derivatives. Virulence towards host, elimination of competitors from environment. Systematcs of pasmids. Application of plasmids in genetic ingeniering; Ti, Ri, E. coli plasmids.Introduction to laboratorie; restriction enzymes, restriction mapping • Structure of the bacterial chromosome. Recplication of the bacterial ribosoms. Translation in procariotic cells. Posttranslational modification of proteins. • Sources of diversity in microorganisms. • Compartmentalization of eucariotic cells and its influence on structure of eucariotic chromosom. • E. coli plasmids isolation. • DNA electroforeis in agarose gel. • Digestion of DNA with restriction enzymes. • PCR • Restriction mapping , aanalizys of PCR products. • DNA ligation

Organic Chemistry	K_W04, K_W10, K_U16, K_U17, K_K03

Includes messages from the scope of the structure and the property of organic compounds, onomastics, the stereochemistry of both mechanisms of the reaction and elements of the organic synthesis. Notions of the organic chemistry, patterns of organic compounds, structure of particles, functional groups, reactions in the organic chemistry, marking of structures of organic compounds. Classification of organic compounds. Types of trusses, polarization, inductive effect, free radicals, karbokationy, karboaniony. Notion elektrofila and nukleofila. Phenomenon of the resonance. Isomerism. The acidity and the alkalinity of organic compounds. Alkanes, cycloalkanes, olefines alkynes, dieny, arenas, fluoro derivatives, organometallic. compounds. • Basic concepts: patterns of organic compounds, drawing, functional groups, level of oxidizing, nomenclature. Types of bonds, hybridization. • Alkanes, cycloalkanes, olefines, dieny, alkynes - characteristics of these groups, physical and chemical characteristics, isomerism. • Aromatic hydrocarbons - characteristics, physical and chemical properties, basic reactions. • Isomerism- kind of, examples. • The nucleophilic substitution and the elimination. • Fluoro-derivatives. • Organometallic compounds. • Revision of lecture material. • Continuation of lecture contents of the previous semester and includes messages about groups of such connections as: alcohol, phenols, ethers, sulfur-compounds, alcohol and phenols - properties, reactions. • Ethers, compounds of sulphur. • Aldehydes and ketones - characteristics, reactions and property. • Carboxylic acids, derivatives, reactions, reactions of sulphur. • Aldehydes and ketones - characteristics, reactions and property. • Carboxylic acids, derivatives, reactions, properties. • Amines-obtaining, properties, reactions. • Amino acids and peptides. • Carbohydrates - characteristics, reactions. • Chemistry of the life. • Revision of lecture material. • Obtaining and structure elucidation product from different class of organic comp

Packages of application software	K_W03, K_U02, K_U08
Application of MS Excel to tabelarize functions, create simple and ad operations with macros and to solve chemical problems and model si software to prepare professional 2D and 3D charts, to perform statistic describing experimental data to perform differentiation and integration.	Ivanced plot charts, perform array operations, simple statistical analysis, imple chemical processes using solver tool. • Application of Origin Lab al processing of experimental data, to estimate parameters for equation of discrete functions • Application of Matlab and/or Maple programs for
arithmetic calculations, algebraic transformations, solution of linear and numerical function integration and differentiation, matrix algebra, solvi Introduction to Programming in Matlab or Maple. Creation of simple progr	nonlinear equations, inequalities and systems of equations, symbolic and ing differential equations, graphing functions of one and two variables. rams for solving selected mathematical problems.

K_W04, K_U06, K_K01, K_K03

Physical	chemistry
----------	-----------

• The theory of perfect gases. Equations of state. Dalton's law and Amagat's law. The theories of real gases. The kinetic theory of perfect gases. Chemical thermodynamics. System. Surroundings. Work. Heat. Cyclic processes. Reversible processes. Isothermal reversible expansion of a gas. The first law of thermodynamics. Internal energy. Enthalpy. Heat capacity of gases, liquids and solids. Thermochemistry. Enthalpy of formation of compounds. Heat of solubility. Bond energy. The temperature dependence of reaction rate on temperature. The second and the third law of thermodynamics. Spontaneous transformations. Carnot cycle. Entropy. Entropy changes in reversible and irreversible processes. Entropy of mixing. Gibbs energy. Helmholtz energy. Differentials and derivatives of thermodynamic functions. The influence of pressure and temperature on free energy. Thermodynamic criteria of spontaneity of processes. Partial molar quantities. Chemical potential. Interatomic and intermolecular interactions. Viscosity and surface tension of liquids. Phase equilibria and diagrams. Three-component systems. Phase rule. Clapeyron equation Clausius-Clapeyron equation. Vapor pressures over ideal solutions. Vapor pressures over real solutions. Solubilities of gases and liquids Thermodynamics of ideal solutions. Activity. Activity coefficient. Boiling temperature – composition diagrams of two-component solutions. Azeotropes. Colligative properties. Colloidal solutions, micelles. Chemical equilibrium. A thermodynamic equilibrium constant. Chemical equilibrium in gas phase. Gibbs energy function. The influence of pressure and temperature on chemical equilibrium. • Physicochemical calculations connected with theory of perfect and real gases, chemical thermodynamics, phase equilibria, colligative properties of solutions Chemical kinetics. The rate and the order of reaction. Zero, first, second, third and fraction order reactions. Determination of reaction order and rate constant. Dependence of reaction rate and reaction rate constant on temperature. Arrhenius theory. The transition state theory. Complex reactions. Kinetics of enzymatic reaction. Basics of katalysis. Adsorption. Adsorption theories. Electrolyte solutions. Debye-Hückel theory. Specific and molar conductance of strong and weak electrolytes. Transport numbers. Ionic mobility. Thermodynamics of electrolyte solutions. Electrochemistry. Semicells and electrochemical cells. Chemical reactions in an electrochemical cell. Electromotive force of electrochemical cells. Thermodynamics of electrochemical cell. Physicochemical applications of semicells and electrochemical cells. • Physicochemical calculations connected with chemical equilibium, chemical kinetics, simple, complex and enzymatic reactions, theory of electrolyte solutions, ionic conductance and electrodics. • Determination of molar refraction of organic liquids. Determination of surface tension of liquids. Determination of critical micelle concentration. Determination of reaction order and rate. Determination of thermical activation of a chemical reaction. Determination of phase equilibrium in three - component system. Determination of adsorption isotherm. Determination of limiting molar conductivity of electrolyte solution. Determination of ΔG , ΔH and ΔS of chemical reaction. Electrochemical determination of solubility constant.

Physical education

K_K01, K_K03, K_K04

K_W01, K_W02, K_K03

• Acquainting with the rules of participation in classes and the conditions for obtaining a pass. Discussion of the principles of safe use of sports facilities and equipment and safety rules in force during the course. • Implementation of various sets of warm-up exercises and exercises focused on developing the student's basic motor skills. • Shaping general physical fitness, motor coordination, endurance, flexibility, speed through individual selection of sports activities (eg: football, volleyball, basketball, table tennis) or recreational physical activity (eg: badminton, gym exercises). • Acquainting with the rules of participation in classes and the conditions for obtaining a pass. Discussion of the principles of safe use of sports facilities and equipment and safety rules in force during the course. • Implementation of various sets of warm-up exercises and exercises focused on developing the student's basic motor skills. • Shaping general physical fitness, motor coordination, endurance, flexibility, speed through individual selection of sports activities (eg: football, volleyball, basketball, table tennis) or recreational physical activity (eg: badminton, gym individual selection of sports activities (eg: football, volleyball, basketball, table tennis) or recreational physical activity (eg: badminton, gym exercises).

Physics

• Measurements and physical units. Dimensional analysis. Functions of one and several variables. Scalars and vectors. Derivatives in physics. Coordinate Systems. • Motion along a straight Line, Motion in two or three dimensions, kinematics of rotational motion. Newton's laws of motion, Applying Newton's laws Work, power and energy, Potential energy. Conservative forces Momentum, Impulse, and Collisions Dynamics of Rotational Motion, Rotation of Rigid Bodies • Periodic motion, differential equations and complex numbers in physics, resonance. Mechanical waves, wave phenomena, acoustics: sound and hearing • Fluid Mechanics, Introduction to thermodynamiscs: temperature and heat, Thermal properties of matter, Laws of thermodynamics, entropy • Introduction to physical laboratory classes. The uncertainty of the measurements. • Introduction to electromagnetism: Electric charge and electric field, Gauss's law, Work and electric potential. Capacitance and Dielectrics. Conductors, electric current, resistance, circuits and Electromotive force . Magnetic field. The Lorentz force. A electric charge and current-carrying wire in magnetic field. The magnetic field induced by current flow. Hall effect, Cyclotron, mass spectrometer. The phenomenon of magnetic induction. • Electromagnetic waves: dispersion, Interference, diffraction, polarization. Application of optics. • Introduction to modern physics and quantum mechanics, wave-particle duality of light and matter, probability and uncertainty principle Schrodinger equation, free particle, parlicle in potential well, stationary states, atomic structure, condensed matter Introduction to nuclear physics, nuclear reactions, nuclear power, stability and radioactivity, biological effects of radiation

Plant biotechnology

K_W06, K_W09, K_W12, K_W14, K_U03, K_U09, K_U18, K_U19, K_K02, K_K07

• Genetics and Biotechnology. Elements of population genetics, genetics and plant breeding. Cytogenetics in plant biotechnology. Molecular diagnosis of plant and pathogen. Genomics research plants. Feedback and gene mapping. Isolation and characterization of genes. Transgenic plants - methods of transformation, identification and breeding. The cell wall - structure and improve biotechnology. • The concept of biotechnology. Biomass feedstock biotechnology. Biotransformation of selected chemicals. Plant biotechnology to improve the quality of food, modified starch and other carbohydrates. The transgenic plants as a source of modified oils of storage proteins with improved functional properties. Use of bioreactor cultures of plant cells and tissue. Production of immunotherapeutic agents and biopharmaceuticals in plants. Production of bio fuel. • Regulation of physiological processes, plant growth and development by endogenous and exogenous factors. Creating a structure gene in plant transformation. Industrial strategies for detection of bioactive compounds in plants. Transgenic plants in improving resistance to biotic, abiotic and herbicides. Transformations and functions of lipids (waxes, cutin and suberin).

Process design	K_W03, K_W13, K_W13, K_W14, K_W19, K_W19, K_U02, K_U08, K_U14, K_U14, K_U15, K_U19, K_U19, K_K01, K_K02, K_K03
 Introduction to methods of designing integrated systems technology. thermodynamic models • An introduction to computing simulation process of simulation methods). The calculation of chemical reaction processes technology. Hierarchical method, an example application. Calculation of separators with two liquid phases. • Design Heuristics. The calculation distillation, extractive distillation, absorption). • Calculation of pipeline net transport (pumps, compressor, expander, valves). • The use of sensitivity 	Characteristics of simulation programs. Basic rules for the selection of ses (flow of information, analysis of degrees of freedom, the classification and reactors. • The criteria for evaluation of the project - "pure" chemical the heat exchangers. • Basics of simultaneous methods. Calculation of of basic unit operations and analysis of the results (flash calculations, tworks and their elements. The calculation of the basic operations of fluid analysis as a tool for selection of parameters of the apparatus.
Process safety	K_W12, K_W19, K_U12, K_U15, K_U19, K_K02
Basic terminology and applicable legal regulations in the field of pro- environment. Mathematical description of selected types of failure Mod	cess safety • Impact of chemicals hazards on the human body and the dels for dispersing substances • Failure risk analysis methods
Professional training	K U02, K K01, K K02, K K03

• Training on safety work and anti fire regulations in plant/company/institution. Extending of knowledge gained on university in practical way. Introducing to work of plant/company/institution and with their internal procedures. Preparation to job in future.

 Proteomics and protein engineering
 K_W05, K_W10, K_W12, K_W14, K_U03, K_U09, K_U18, K_U19, K_K02

 • Goal and importance of protein engineering • Bioinformatic methods in analysis and characterisation of proteins and its recombinant derivatives • Selected aspects of biophysical and biochemical protein characterisation (i) in-silico (ii) by experimental methods • Design and production of recombinant proteins • Selected aspects of natural and non-natural protein modifications and their importance

Purification of biotechnology products

K_W10, K_U17, K_K03

biotechnology. Chromatographic and adsorptive technique of species s and continuous chromatography (SMB). Expanded bed adsorption of exchange and gel chromatography. Theory of chromatographic separ influence of process parameters: temperature, composition of mobile separation. The optimization of periodical and continuous process. Prin	e processes. The examples of applications for species separation separation. Thin layer chromatography, column periodical chromatography chromatography. The normal and reversed phase chromatography. ration: basic mathematical models of adsorption and mass transfer. T e phase, solid phase, pH, ion strength of mobile phase on the mixtu- iciples of selections of chromatographic systems. Capillary electrophore
and electrochromatography. Drying methods, crystallization methods.	
Scientific and technological information	K_W03, K_U01
Search for chemical information in scientific journals available on-line fro	om the Rzeszów University of Technology library.
Social competences	K_W15, K_U06, K_K04
• Social and interpersonal competences as an ability to achieve social partners • Components of social competences • Competencieve social strategies for image formation and self-presentation • Conditions of ir skills and abilities relevant to social competences (assertive, cooperative abilities relevant to social competences (mutual understanding and ge influencing, solving problems and conflicts) • Developing and improving assertive skills, skills to strengthen, sustain others, self-expression = competences - verbal and non-verbal communication • Improvement conditions) • The importance of social competences	ial and individual goals while maintaining good relations with interact mining the effectiveness of behavior in the situation of social exposu hterpersonal skills and the importance of social competences • Improv- e, social, and social resourcefulness) • Developing and improving skills etting to know each other, creating a climate of mutual trust, helping is skills and abilities essential for social competences (communication sk skills) • Developing and improving skills and abilities relevant to so to of the skills of beneficial self-presentation (especially in profession)
Statistics and results elaboration	K_W01, K_W03, K_W14, K_U10, K_K01
 LIMS (Laboratory Information Management System) – selected probled data • Exploratory data analysis of the analytical measurements, descript frequency distribution of a variable. • Statistical hypothesis testing. Para between variables. • One-way and multiple analysis of variance. Discrim the observed variable distribution to a theoretical distribution. • Manager of empirical variable distribution. Statistical inference- nonparametric to between variables: linear and non-linear regression. • Analysis of Varian 	ems. • Experimental database. Rejection outliers in data. Selective use ptive statistics, cross-sectional data, normality tests, statistical graphs. Immetric and non-parametric tests. • Multiple regression. Study of correla ninant analysis, factor analysis and principal components analysis. • Fit ment of Statistica program data. Parameters of variable distribution • St tests. • Statistical inference- parametric tests. • Analysis of the relations ce.
Technical safety and ergonomics	K_W13, K_W14, K_U12, K_K01, K_K02, K_K04
accidents at work. • Responsibilities and regulations, nability for accided accidents at work. • Responsibilities of the university in the provision of school buildings, the requirements for systems and equipment located and ergonomics. • Security in terms of the system (security as a manage at work (the classic models of accidents, near misses models, modellin theories of safety. • Ergonomic aspects of the system human – machin computer, driver – car, pilot – airplane, as real cases of human – ma labour and static physical labour. • The study of the burden of mental working conditions. • Risk assessment in a selected work position. • Erg and recommendations for the design of the spatial structure of the worl Ergonomic factors in the organization of work. • Ergonomic assessi University rules of conduct in case of accidents and emergencies (fi protection (including evacuation).	safe and healthy learning environment: health and safety violation a safe and healthy learning environment: health and safety violation a ement objective, as a legal obligation, a moral norm). • Models of accide ig human behaviour in emergency situations). • Statistical and behavio re – environment. • Assessment of the reliability of the systems: huma chine systems. • Methods for measuring the burden of dynamic phys work. • Dangerous and harmful factors connected with work process gonomics in the shaping of working conditions (some ergonomic princip kplace, indication and control devices, technological processes, objects ment of machinery and equipment and improving working condition re, accident, etc.) pre-medical aid rules in the event of an accident,
Toxicology	K_W14, K_U03, K_U19, K_K02, K_K05
Introduction on the toxicology, definition of poison, intoxication, intox way of introduction of poisons in the organisms. Factors which influen of poisons in the organisms and degradation process of the poisons biochemical mechanisms of elimination), etiology of intoxication, definiti intoxication and basic therapy of intoxication REACH process – lei identification of harmful substance, dose – response, exposition, risk ch NOEL, NOAEL, NOEC, NOAEC, SF, UF, MF, ADI • Practical presenta Developmental toxicology, toxicology versus spermatogenesis, oogen developmental organism after birth to adulthood. • Toxicology of ch Toxicology of acids and hydroxide. • Toxicology of selected organic cor Mg) • Toxicology of pesticides – divide of pesticides according to us chemical groups • Intoxications of selected drugs • Mycotoxins - char plants – chemical compounds of toxic plants, divide toxic plants by e animals – chemical compounds of animal toxins, representative anima sampling, packing and sending for chemical toxicology analysis • De Determination of toxicologically important chemical compounds separat biological material • Determination of alkaloids in biological material b method (salinomycín, monenzin, paracetamol) • Determination of herbic	ication types, toxicity of chemical compounds, accumulation, persister ce of toxicity of poisons, synergisms and antagonisms. • Biotransforma in the environment, elimination of poisons from organisms (pathway ion of abbreviation which will be used in the toxicology. • Prevention of gislative in the European Union. • Risk assessment, definition of aracteristic, calculation of ADI (or RfD) and LD50, definition of abbrevia ation of risk assessment of use of herbicide in the aquatic environment esis and fertilization. Evaluation of toxic compounds on the embryo ioice inorganic compounds (CO, CN-, NO2-, NH3, H2S, CI2, PH3 mpounds. • Toxicology of selected heavy metals (Pb, Cd, Hg, Cu, As, e in the agricultural practice, toxicology of selected pesticides accordin acterization, toxicity, risk, divide by effect of the living organism • Poison I species. • General information about toxicology, diagnose of intoxicat termination of noxa in biological material without samples adjustme ble by water steam distillation • Determination of warfarine (kumarine) in y TLC method • Determination of drugs in the biological material by ides MCPA and DNOK in the biological material
nme content of elective modules	
Application of biotechnology in modern therapy	K_W05, K_W12, K_U06, K_K01, K_K07
 Biotechnology-derived drugs (biopharmaceuticals) and conventional in the production of human hormones. Monoclonal antibodies - the use Vaccines - types, potential for development. Xenotransplantation Immunosuppressive drugs: modifications and applications. Artificia Nanoparticles in biomedical sciences. Lecture credit. 	nedicines. • Animals as a living bioreactors. • Biotechnological methods in the treatment of immunological diseases and cancer, and diagnostic - the directions of development. • Induced pluripotent stem cell al skin. • Angiogenesis in vitro. • Diagnostic tests - RIA and ELIS
Bioinorganic chemistry	K_W04, K_W05, K_U06, K_K01
 Metal coordination sites - their role in bioprocesses in biological sy storage of transition metal ions. The formation constants of transition me the potential of the metal complexes. Biological and synthetic molecula reactions of reactive oxygen species in biological systems. Heme prote chemistry, metals and their compounds in medicine (prevention, diagno; 	stems. Porphyrin ligands and other macrocyclic systems. Transport etals complexes and methods of their determination. Factors influencing ar oxygen carriers. The transfer of electrons in biochemical reactions. eins and copper proteins in redox reactions. Medical elements of inorga stics)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Cell signalling	K_W05, K_U06, K_K01

English (A)

K_U02, K_U06, K_U07

• Talking about yourself, famiy, home, likes and dislikes. Question forms. • Talking about important dates and events. Writing formal and informal emails. • Discussing differences between men and women. Expressing opinions. • Describing people. Revision of verb tenses: present and past simple, present and past continuous. • Talking about yourself. Conversation and interviews. • Giving advice on successful interviews. Talking about yourself. • Talking about films. Expressing opinion about films. • Talking about life experiences. Verb tenses: present perfect and past simple. • Talking about the media and news. Expressing opinion on conspiracy theories. Matching headlines with explanations. • Talking about stories from the past. Writing a news report. • Talking about lying. Collocations with 'say' and 'tell'. • Tellling a story or anecdote from the past. Listening to people telling anecdotes. • Phrases to describe a good/bad experience. Talking about memorable moments. Writing about one of your happiest memories. • Expressing opinions. Talking about problems of teenagers and their parents. • The future (plans): the present continuous, going to, will, might. Writing messages; learn to use note form. • The future (predictions): will, might, may, could, going to, likely to. Future time markers; idioms • Listening to predictions about the future of communication. Talking about how things will change in the future. • Reading a short story about a misunderstanding. Dealing with misunderstandings. Types of misunderstandings; phrases to clarify/ask someone to reformulate • Listening to a misunderstanding. • Reading an article about millionaires. Modals of obligation: must, have to, should. • Discussing the qualities needed for different jobs. Completing a survey and discussing the results. • Reading about childhood dreams. Reading job advertisements. Used to and would. • Listening to two people describing dream jobs gone wrong. Talking about past habits. Writing a covering letter. • Reaching agreement. Business collocations. Phrases to give opinions, • Listening to people making decisions in a meeting. Learning to manage a discussion; Participating in a meeting and creating a business plan. • Office conversation; phrases to describe routines. Describing a day in your life. • Reading an article about how technology changed the world. Comparatives and superlatives. Vocabulary: technology. • Discussing how technology has changed the world. Talking about different types of transport and their uses. Writing an advantages versus disadvantages essay. Talking about future hopes and plans. Grammar: Future Perfect, Future Continuous. • Listening to people answering difficult general knowledge questions. Doing a short general knowledge questionnaire; answering questions on your area of expertise. • Polite requests. Problems and solutions. • Listening to conversations about technical problems. Learning to respond to requests. Role-playing asking and responding to requests. · Reading about basic emotions. Zero and first conditionals. -ing versus -ed adjectives; multi-word verbs with on, off, up and down · Listening to a radio programme about therapies. Talking about your emotions. Discussing what advice to give people in a variety of situations. • Second conditional. Verb-noun collocations • Discussing what you would do in different hypothetical situations. Writing a letter of advice. • Giving good and bad news. Life events. • Listening to conversations where people receive news. Learning to introduce and respond to news. Role-playing giving someone news • Phrases to describe a good/bad experience. Talk about memorable moments. Writing about one of your happiest memories. Reading a short introduction to The Secret of Success. Present perfect simple versus continuous. • Present and past modals of ability. Reading a biographical text about the memory men. • Listening to a three-way conversation about memory. Talking about your abilities. Writing a summary. Clarifying opinions. Reading a story about qualifications. • Listening to a discussion about intelligence. Learning to refer to what you said earlier. Choosing the right candidate for the job. Giving opinions and examples. • Reading a BBC blog about neighbours. Articles. Quantifiers • Describing your neighbourhood and discussing how it could be improved. • Relative clauses. Vocabulary connected with the internet. Reading a website review. • Listening to descriptions of online communities. Comparing real-world and online activities. Writing a website review. • Being a good guest. Welcoming. Reading about how to be a good guest. • Listening to people describing guest/host experiences. Learning to accept apologies Discussing problematic social situations. • Revision for the written examination. • Speaking practice - preparation for the oral examination.

English (B)

K_U02, K_U06, K_U07

• Flatmating, family, personality vocabulary, asking questions. Speaking, listening. • Vocabulary used in informal emails. Writing an informal email, checking accuracy • Feelings, gradable and ungradable adjectives, word formation. Reading, speaking, listening. Grammar: Present Perfect Advertisements. Making polite phone enquires. Reading, listening, speaking. • Writing a summary of a first encounter story • Social issues. Verbs and nouns with the same form. Grammar: Present Perfect • Preventing crime, surveillance. Giving solutions. Grammar: the Passive • Formal written language. Writing a letter of complaint. • Newspaper extracts. Expressing opinions. Opinion adjectives. Reading and speaking. • Discussing ingredients of happiness; carrying out a happiness survey. Writing tips for being happy for a website. • Games. Discussing behaviuor and annoying habits and routines. Grammar: would/used to.Speaking. • Talking about leisure. Writing an opinion essey. Using linkers. • Talking about holidays. Grammar: Future forms, countable and uncountable nouns. • Describing procedures. Common actions in procedures. Talking about gameshows. Verbs. • talking about unusual experience. Recommending. Writing a story. • Reading a story. Sayings. Grammar: Past tenses. • Telling stories Talking about experience from the past. Grammar: adverbs. • Wishes and regrets. Multi-word verbs. Grammar: wish/if only • Talking about reading habits, favourite books, likes and dislikes. Reading a summary. • Describing a favourite scene in a film. Writing a description of a favourite scene. • Rading and talking about the worst inventions. Bicycles. Change. Compound nouns. Grammar: articles. • Discussing advertising tactics and the influence of advertising. Grammar: condictionals. • Marketing and advertising. Writing a report. Learning to make written comparisons. • Brainstorming ideas. Adjectives. Suggesting ideas. Showing reservation. • Presenting a new business idea. Writing: a product leaflet. • Talking about different ages. Word formation - nouns. Grammar: Modal verbs. • Talking about future hopes and plans. Grammar: Future Perfect, Future Continuous. • Writing a letter to your future self. Using linkers of purpose. • Collocations. Convincing. Asking for clarification. • Collocations. Living longer. Taking part in aclass debate. Writing: a forum comment. • Television. different kinds of TV programmes. Interesting facts about TV. Multiword verbs. Quantifiers. • Retelling real and made-up stories. Reading a questionaire. Grammar: reported speech. • Writing a discursive essay. Reading a newspaper article. Broadships and tabloids. Predicting. • Mistakes in press and TV. Re-telling a news story. Writing: a news article. Reading news stories about behaviour in tough situations. Collocations. Difficult decisions. Grammar: conditionals. • Feelings. A quiz on whether you're a morning or an evening person. Different attitude to time. Grammar: -ing form and infinitives. • Idioms connected to time. Writing an informal article. • Adjectives of manner. Talking about how to handle awkward situations. • Describing a family or cultural ritual. Writing about a family ritual. • Watching an extract from a programme about body language. • Discussing how good witness you are. Crime and criminals. Grammar: ing form and infinitives with different meanings. • Synonyms. Verbs with prepositions. Crimes. Grammar: modal verbs. • Reading an advice leaflet bout how to avoid trouble on holiday. Avoiding repetition. Writing a story about a lucky escape. • Reporting a crime. Solving problems. Rephrasing. • People in unusual situations. Survival items. Describing a dangerous adventure. • Professional language: mathematical symbols and terminology. Basic mathematical operations. • Professional language: Fractions, powers, logarithms. • Revision for the written examination. • Revision for the written examination. • Speaking practice - preparation for the oral examination. • Speaking practice - preparation for the oral examination.

French (Α

K_U02, K_U06, K_U07

• Interrogative pronouns (simple and complex inversion). • Trip around Paris; short advertisements - writing. • Describing events with the use of le passé composé tense. • Vocabulary related to describing the past. • Similarities and differences between Polish and French educational systems. Interpreting figures. • Presenting the university and the field of study. • Describing your last holidays - the use of l'imparfait and le passé composé tenses. • Direct object pronouns in various tenses and moods. • Indirect object pronouns in various tenses and moods. • Living in the city and in the country - advantages and disadvantages; comparatives and superlatives. • Real estate ads analysis; le conditionnel présent mood. Possessive pronouns. • Hypothesizing and giving opinions; impersonal verb forms. • Describing things; the place of an adjective in a sentence. Relative pronouns. • Vocabulary related to shopping; negotiating the price. • House chores; sharing duties with the family members. • Favourite dish - preparing a questionnaire; written comments on its results. • Outfits for various occassions; family celebrations. • "Dont" relative pronoun. Giving personal opinion. • Means of transport - comparison. • A biography of a famous person; le plus-que -parfait tense. • The role of fashion in people's lives - presenting opinions. • Direct and indirect object pronouns COD/COI in the past tense. • The use of past participle with the subject and direct object. • Reported speech - positive sentences. • Car accident - expressing reasons. • Relationships within neighbourhood - describing people. • Hypotheses about text characters. • Sharing a flat - expressing personal opinions. • The "gérondif" mood as a way to express simultaneity, manner, reason. • Entertainment ans free time activities. • Reported questions. • Complex relative pronouns. • Presenting the selected French region. • Active and passive voice. • A film review. • Newspaper article - the use of the passive voice. • Job advertisement, CV, cover letter - documents analysis. • Vocabulary and expressions used in administrative correspondence - writing a cover letter. • A job interview. • Students' work, socializing and building a network of contacts. • The "subjonctif" mood - introduction. • Describing work experience. • Internet as the most popular medium. • Future tenses: le futur proche/ le futur simple; conditional "si+présent+futur simple". • Plans for the future. • Conditional « si+ imparfait+conditionnel présent ». • Expressing wishes. • Adverbs - the place in the sentence. • Private letter and reply to a private letter. K U02, K U06, K U07

French	(B)
--------	-----

• Describing and reporting events in the past tense. • Paris - the center of fashion. • Pronouns COD/COI in various tenses. • Modern and dying professions. • A famous fashion designer - presentation. • Demonstrative and possessive substatival pronouns. • Simple and complex relative pronouns. • Jeans - a universal timeless outfit. • Complaints and solving problems, giving advice. • Expressing reason and result. • The subjonctif' mood - expressing purpose. • Traffic regulations - obligations and prohibitions. • Reported questions. • Choosing profession, justyfiyng. • Expressing the reason. • Living in homeland and abroad, giving arguments. • National symbols of Poland and France. • "Le passé simple - literary tense". • Comparisons - various living styles, the comparative of irregular adjectives. • Real estate market in France and in Poland. • Expressing acquiescence. • Emigration and mobility, expressing opinions. • "Le savoir-vivre" - good manners. • What is proper and improper - similarities and differences concerning Polish and French customs. • Negatives - summary. • Expressing prohibition. • Expressing hypothesis. • Passive voice in a newspaper article. • Climate changes - vocabulary related to ecology. • People's eco-friendly habits. • Plans for the future - time expressions. • Inventions which revolutionized people's lives. • Expressing hypothesis and condition. • Eco-firendly solutions for the city, region and country. • Ideal friend; superlatives. • Modern idols. • Presenting the favourite character. • Passions in our lives. • Tense concordance in a short story. • Globalisation, positive and negative consequences. • Verb patterns with an infinitive. • Expressing disagreement towards proposals. • The art of giving arguments. • A mobile phone: hell or paradise? • Where does Europe end? - information about the European Union. • Verbs useful for giving arguments. • Arguments cohesion - coherence linkers. • Sentence transformations - expressing coherence. • Higher education - facts and expectations. • Present

Fundamentals of economics

K_W15, K_W16, K_W18, K_U11, K_U14, K_K06

· Introduction to Economics (outline of economic thought, the basic concepts, principles and assumptions of microeconomic analysis, the place of economics in the system of social sciences and relationships with other disciplines). Introduction to microeconomics. • The model of the market economy (institutions, productivity, efficiency, actors, resources and streams in the economic system, market - classifications and functioning). Demand (law of demand, exceptions, determinants, elasticity of demand), supply (the law of supply, exceptions, determinants, elasticity of demand), the balance of the market in the short, medium and long term, the impact of regulated prices on the market, model cobwebs. Consumer choice (the functioning of households, usability, first and second Gossen law, pension consumer Marshall, the balance of the consumer). • The rules of the enterprise (introduction to the theory of enterprise, basic definitions, classifications and processes). • The short run and long run production function in the market, economies of scale, choice of optimal technology. • The instruments of cost management in the enterprise, cost function in the long and short term, costs and liquidity. • Perfect competition and monopolistic competition. • Various degrees of competitiveness in the marketplace: monopolies, oligopolies • Introduction to macroeconomics, the basic phenomena and macroeconomic problems. • The development of economic systems, economic growth - measuring and conditions of the product and national income and its determinants, economic conditions (cycles) and the role of investment in the economy, analysis of the situation in Europe and the world. • The importance of the public finance sector, the organization SFP (sub), the impact of fiscal policy on national income, the role of the state in the economy, the budget as a tool for influencing the economy, the issue of budget deficit and public debt, the impact of public support (including EU funds) for the development of entities the national economy, analysis of the situation in Europe. • The development of the monetary system, the role of money in the economy, money in the strict sense and broad sense, the demand for money, the money supply and the mechanisms of its creation, quantitative theory of money, monetary aggregates. • The banking system of the state, the role of the central bank and monetary policy tools of monetary policy, the interbank market and the activities of commercial banks. • The phenomenon of inflation and its effects on social and economic demand and supply-side causes of inflation, the measurement of inflation - inflation, analysis of the situation in Europe, anti-inflation policy. The labor market, employment policy, the importance of competence and demographic processes, labor market flexibility, unemployment as a problem of economic and social development. International economic relations, the foreign exchange market, balance of payments, the single market of the European Union and its importance for the development of Member States, including developing countries. The European Union in the global economy.

Fundamentals of management

K_W15, K_W16, K_W18, K_U11, K_U14, K_K06

• Management as an academic discipline • Company and its environment as an object of management • Management features • Conterporary management problems.

German (A)

K_U02, K_U06, K_U07

• New communication media. Establishing new contacts: Speed-dating. • Describing one's language skills - working with a video material. Declension of an adjective after definite, indefinite and no article. • Media competences, ability to creatively use internet assets in foreign language learning. Time adverbs. • Bisness meetings in a new environment, forms of greeting and introduction. • Strategies of learning language for special purposes. • Private and business meetings. Modal particles. • Planning and organizing official events. • Spoken and written invitations, establishing the date of the meeting. Rektion of the verb. Adverbial pronouns in questions and answers. • Working with a video material - 'Oktoberfest'. Planning and preparation of a presentation. • Business lunch. Quiz about etiquette. • Features of a good presentation. • Preparing product presentation. • Planning a holiday, travel bureau's offers. Assumptions - 'werden + wohl' verbs + infinitive. • Accommodation - hotel rating, opinions on internet sites. Relative sentences, relative pronouns. • Public transport in German speaking countries. • Future vehicles and travels. Future tense 'Futur I'. • Working with a video material - dream travels. • Organizing a conference, choosing a hotel, business mail. • Flat market, different forms of accommodation. Complex nouns. • Living community, student's house. Looking for a flat - advertisements. Time prepositions. • A student room, flat appliances, description of functions of furniture and items of every day use. • Switching flats during holiday. Word order. • Multi generation house. • Office and its equipment, positive rapport. • Living business community, pros and cons. • Presenting a profession - working with a video material. • Ideal work place. Conditionals. • Job advertisements, writing a cv. • Different ways of job searching. Advice and tips for job applicants. Sentences with 'damit' and 'um...zu'. • Job applications, talking about your education and work experience. • Small-talk, expressing opinion about one's job - pros and cons. • Famous composers, a biography note. Negative sentences. • Music genres, music instruments, music bands. • Festivals and concerts in German speaking countries. A schedule of musical events. • Planning a shared evening, inviting to a concert, writing a private email. • 'Rammstein' band - presenting a band. Providing argument support one's choice. Sentences with "denn", "weil", "nämlich" "deshalb". • German rock music - working with a video material. • Creating a presentation about German rock music. • Board games, tele shows Rules of favourite games. Passive voice. • E-commerce, internet shops. • Psychology of selling, interpreting the behaviour of the customer. Passive voice with modal verbs. • Consumers' typical behaviour during shopping. Identification of different behaviour. • Online shopping discussion - pros and cons. • Vocabulary related to finances. • Acquisition of new skills, upgrading one's qualifications, various course offers and certificates. Noun's genitive. • Advanced ways of information searching, remote ways of providing education, education platforms. • Facilities found in a moder language lab. Prepositions of place. • Education system in Germany - a discussion forum. • Technical occupations, handling and description of technical equipment, manuals. Prepositions with dative and accusative. • Malfunctions and technical faults. Imperative. • Complaints - exchaning emails.

German A

K_U02, K_U06, K_U07

• Friendship, meetings, people relationships, relations. Declension - type 'n'. • Describing a person, introductions, characteristics of types of behaviour, features of character. • Presenting one's characteristic. Noun formation. • Reder's magazine - class reunions and locating classmates by internet. Working with a text. • Occupation and work, workplace, presenting one's flaws and strengths. • Talking about the past. Past tense (Präteritum) of regular, irregular and mixed nouns. • Report concerning the internship done. Presenting opinions regarding an employee. • Conditions and forms of work. Requirements and competences. • Working with a video material. Conducted activities and working conditions. • Presenting one's plans and professional plans. • Living conditions, an interview with a real estate agent. Relative pronouns and relative clauses. • Analysis of offers and notices, explaining abbrevations. Adverbials of time. • Living in Germany: informational text, statistics, graphs. • Customer service, phone conversations. Language reactions based on a given situation. • Oral and written complaint. Sentences with "obwohl" and "trotzdem" • Writing a formal letter with a set of fixed phrases. • Iniviting to a company promotional meeting - working with a text. • Computerisation of everyday life. Functions of devices/appliances used nowadays and in the future. • Visions of technological progress of the future. Futur I tense. • Using electronic devices in private and professional and social situation. • Morking with a video material - history and development of an enterprise, features of products and their distribution. • Formal and informal invitation. Conditional conjunction "falls". • Business meeting. Rules of participating in a meal and different professional and social situations. • Holiday plans, expressing wishes and intentions. Verbs: 'sollen'. • Media, Germany's press market. • Characteristics of a given magazine - presentation. • Shopping, slecting products, reacting to suggestions and professional expre

with 'bevor' and 'während' conjunctions. • Describing personality and aptitudes, expressing opinions and presenting test results. • Miniproject professional predispositions, weak and strong sides of a candidate, talking with a careers adviser. • Working with a video material - history and development of Hueber publishing house, as well as its products. • Working conditions and concept of an employee-friendly enterprise. Gradation and declension of an adjective. • European Union - employment opportunities in EU countries, its history, as well as inner labour market and main institutions. • Smoking prohibitions in a work place - formulating arguments in favour and against, expressing opinions. Imperative. • Presentation structure, template, typical expressions. • Conditions determining good employment and company's attractiveness. • Wasted chances and opportunities. Unreal clauses in the past. • Reporting experienced failures - a radio audition. Conditional clauses - Konjunktiv II. • Helpline describing a given situation. 'Wäre / hätte' structures + Partizip II. • Describing controversial events - discussion and commentary. • Expressing disappointment and reacting to it - writing an e-mail, working with a text published on a blog. • Everyday situations that make you happy. Plusquamperfekt tense. • Expressing emotions - language means. • Summarizing the previous year and positive events. Time clauses with 'nachdem'. • Working with a video material - 'Our piece of happiness'. Family history. Important life areas, experiencing success and satisfaction. • Parties, celebrations, events happening in a workplace. • Beginnings of a career. Speed-dating. Employers' expectations. • Comparison of holidays and events. Written invitations for different occassions. • Writing an e-mail and letters - components. Writing invitations.

Molecular taxonomy

K_W12, K_U06, K_K01

• Evolutionary biology. Classification and phylogeny. Mechanisms and the way of evolution. The formation of genetic variation. Genetic variation in natural populations. The evolution of phenotypic traits. Species and speciation. • The evolution of proteins, genes and genomes. Applications of molecular phylogenetics

K_W07

Remediation of toxic substances in environmental material

• Geochemical cycle. Soil as the ecological environment. Emission of industrial pollution to the environment. Pollution of geochemical cycle (asbestos, chromium(VI), lead, mercury, cadmium, synthetic organic compounds, dioxins, DDT and derivative of compounds, PCB, PAH. Protecting the environment from production of biotech and chemical industries. Basics of post-production waste and biotechnological aspects of environmental protection. Physical and chemical properties of soils. Soil organic matter. The content of organic carbon (humus) in the soil. Macro and micro-organisms in the soil environment. Oxidation-reduction properties of the soil. Sorption capacity of the soil. Distribution of soils in Poland, according to the state of emergency. Protection of soil. Remediation and bioremediation. Physicochemical methods of remediation. Biological methods of remediation. Microorganisms and their use in the process of rehabilitation of degraded soils. Biodegradation as a method of purifying contaminated soil petroleum products. Phytoremediation. Landfarming. Reclamation of degraded soils. Degradation of soils and their resistance to degradation. Eco-technical tasks in the field of protection and restoration of soil.

Russian (A)

K_U02, K_U06, K_U07

· Healthy lifestyle - reading comprehension, discussion. · Family celebrations - getting married and traditions connected with it. Reading comprehension and speaking activities. The use of pronouns gpyr gpyra. • State and church holidays - preparations; describing holiday customs. Coordinate clauses. • Evening at the theatre - a play review writing. Grammar: subordinate relative clauses; use of the который pronoun. • Mass media - the role in daily life of modern society. Speaking: giving opinion on radio and TV programmes. "Абитура на ypa" - reading comprehension tasks. • Popular professions and workplaces. Speaking: expressions of opinion about workconditions. Grammar: negative pronauns: никто, ничто. • Workactions connected with the professions. Speaking, grammar. Use of verbs:стать, работать (кет). • Writing of formal letters: CV and motivation letter. Grammatical constructions:несмотря на то, что • Work advertising - writing. Lexical exercises. • Universities in Russia - rules and reasons for studying - discussion. Reading comprehension tasks. • Talking about working abroad - pro and contra arguments - discussion. • Interview for a job - dialogs. Grammar exercises: use of pronauns: сам, самый, • School trip - oferts - offers of travel agencies. Giving information. Grammar exercises: verbs: noceruts/noceugats • At the camp - main events. writing exercises. • Travel with train - announcement at the station. Grammar: noun nyte - declination. • Meanse of transport - underground - positive and negative sites. Discussion. Reading comprehension • Visit in travel agency - negotiations about travel destination. Grammar: verbs - заказать/забронировать use; forms. • Writing of the formal letters to travels organizer. Lexical exercises. • Renting a flet - discription of the rooms. Reading comprehension tasks. • Houses to rent - advertisements, writing exercises. Short forms of adjectives. • Accidents during the travel, reading text, lexical exercises. Daily routines and obligations in household - discussion, comprehensive tasks. • Speaking: partnership, woman and man in modern society. Writing exercises. • Generation gap - reasons. typical conflikts, sozial norms - discussion. Grammar - irregular verbs. • The history of life of famous writer M. Bulhakov - problems in his novels. Lexical exercises. • Our holydays. Writing of postcards. Verbs forms - grammar exercises. • Free time organization. Work with text " Отдых в современном обществе" - comprehension tasks. • Sport - emotion, sport spectacles. Lexical exercises. • Speaking: sportly life style - positive and negative aspects. • Natural environments destruction - reasons and consequences. Reading comprehension tasks. • Greenhouse effect and his consequences. How to protect our enwironment - discussion. • Speaking: visit at a restaurant ordering, menu analysis. Writing recipies. Grammar: imperative forms of verbs. • Speaking: Problems of school leavers in modern socjety. Work with text: Трудоустройство" • Job offers - loan and workconditions. Graduating of adjectives - grammar exercises. • Doccuments connected with the job - writing applications for a job. • Use of business idiom - examples. • Taxes - kinds. Lexical exercises. • Advertisements - discription, visualisation of information. • Contract of employment - a model analysis; employees' duties. Contract of employment - writing exercises. Economy - definition, main ideas. Lexical and grammar exercises. • Economy reforms in Russia in the 1990s. "Рынок - не рынок" - reading сотргененскоп. • The Russian Federation - administrative division, state institutions. Lexical exercises. • Russian economy policy. "Российский экспорт - импрт" - reading comprehension. • Enterprises - types and organization. Functions of enterprises - main branches, finances. Verb "заниматься" with gerunds. • Enterprise - legal status and general shaleholders meeting. • Profitability indicators - vocabulary. Grammar exercises. • International companies on the Russian market. "Окно на восток российского бизнеса" - reading comprehension, analysis, presentation, discussion. • Speaking: presenting companies - branches. • Advertisements - types, structure. Writing exercises. • Commercial documentation - orders, confirmation, simple covering letters. • Speaking activities

Russian (B) K U02, K U06, K U07 · Appearance. · Features of character. · Asking for personal details. Processing and transferring information. · Ethical problems. Personal prononus with or without preposition. • Home products. Present tense. • Real estate, Nouns. • House renovations. Adjectives. • School requirements. Verbs: учить, учиться, изучать. • Systems of educations in Poland and Russia. • School requirements. Prepositions в, на. • Occupations. Verbs related to different occupations. • Professional work. Temporary work. Labour market. Present tense. • Our portfolio. Writing a letter of motivation. Writing a CV. Nouns. • Family holidays. Naming holidays. Possesive pronouns. • Family members. Leisure time and reflexive verbs. • People and relationships. Adverbs of place and direction. • Food and its names. • Restaurants. Numerals 1,2,3,4 in junction with nouns and adjectives. • Describing diets. Expressing opinions. Demonstrative pronouns. Imperative. • Services: buying and saling. Verbs: купить/покупать. • Bank (types of payment). Main numerals. Nouns: рубль. • Products. Advertisements. Adverbs of level and measurement. Means of transport in Russia. Interesting places in Russia. • Travelling vocabulary. Naming and describing accommodation. Nouns ending -ий -ия -ue. • Describing excursions and sight-seeing. Expressing opinions. Writing a blog. • Art genres (movies). Cinema genres. • Mass media. Present tenses. • Sport disciplines. Sport venues. • Sportsmen. Sport equipment. Comparatives. • Sport competitions. Nouns with adjectives. • Describing one's well-being. Ilnesses and means of curing them. • Curing and healing processes. Prepositions in constructions related to time and direction. Addiction. Imperative. • Naming basic technical devices. Activities made with basic technical devices. • Computer and internet. Vocabulary. • Wildlife. Naming plants and animals. Describing landscape. • Catastrophies and natural disasters. Adjectives. • Catastrophies and natural disasters. Adjectives. • Ecology. Describing activities related to protecting natural environment. • Russia. Country's structures and offices. • Social and international organizations. Present tense. • Economics. Inner and international conflicts. • Social life. себя pronoun. друг друга expression. Social problems. Vocabulary related to current social issues. • Master and Margaret. Reading comprehension. Life and work of Michael Bulhakow. Mythology. Selected information concerning Slavian mythology. • Wasilij Kandinskij. Reading comprehension. • Russian fables. Nouns with adjectives. • Russian holidays. Naming and describing holidays. • Polish holidays. Naming and describing holidays.

4. Student work placement and internship

The basic aim of the professional practice is to acquire practical skills that complement and deepen the knowledge acquired by the student during the classes at the university. The implementation of the internship provides the opportunity to: confirm and develop the student"s professional competences within the chosen field of study and / or specialization, become familiar with advanced technical solutions as well as acquire professional knowledge and skills of their practical application,

participate in the realization of specific projects and real problems solving. Apprenticeships give students the opportunity to learn about the specifics of the company's operations and to shape the attitudes desired by employers and co-workers (proper work organization, conscientiousness and responsibility for entrusted tasks).

Apprenticeship is treated as a separate module of education and it is mandatory to pass. The way of organizing professional practice is defined in the Rector's Regulation on the principles of organizing internships for students of the Rzeszów University of Technology. Students wanting to broaden their professional experience may also take additional internships at any time. Additional practices can be executed during the summer break.

The number of student work placements and internships is presented in Chapter 3 and may vary in different variants of the study plan for a given course Biotechnology.